我正在参与「启航计划」

前言

趁着五一有时间,先把大三下个学期的期末作业做了,把微信小程序和Java开发的一起做了。顺便把机器学习的也一起做了。所以的话,咱们完整项目的技能体系主要有 微信小程序开发,Java Web开发(由于我喜爱把admin后台办理和用户端服务分隔,所有我挑选SpringCloud做一个切分,实践上便是两个服务+网关),然后是根据Pytorch的NLP对话机器人,那么关于对话机器人的话,这个没办法,只能持续用从前GPT2的那个,没办法,有几个作用不错的,可是嘛,跑不动,当然也能够直接那啥,可是吧有必定的风险,能跑就行了,架子搭起来,上面都好说。

相同的,文章分为上下两篇,后端与前端部分,其实也没办法,一天没写完,中心预备会议录屏去了。中心还遇到了Python的一个bug,查了小半天的issue。

整个项目的规划非常简单,也没有做什么杂乱的东西,dome罢了,没必要那么杂乱,也不见得那些教师能够看懂,没必要把自己搞得那么累,能花500搞定绝不花1000精力搞定。

所以,整个项目是很简单的,不过涉及到的东西不少,所以问题在你关于上面说到的技能熟不熟悉。

架构

ok,这儿咱们能够先看到咱们整个项目的基本架构。由于这儿没有涉及到布置,所以这儿的话,我就不画那些花里胡哨的东西了。

聊天机器人开发实战--(微信小程序+SpringCloud+Pytorch+Flask)【后端部分】

那么这儿的网关的话,其实便是这个SpringCloud傍边的GateWay,然后咱们的flask算法服务都是注册到nacos,进行服务发现注册调用的。经过网关咱们开放了对外的拜访接口,可是直接经过网关不能直接拜访到flask程序,这个程序是经过SpringBoot进行长途调用,长途调用的地址是经过Nacos获取的,换一句话来说,咱们的算法服务是归于内网服务,不露出。

那么在nacos的视角是这样的:

聊天机器人开发实战--(微信小程序+SpringCloud+Pytorch+Flask)【后端部分】

SpringCloud服务构建

ok,废话不多说,咱们先来看看这个SpringCloud服务是怎么构建的。

其实这儿的话,咱们先是偷了个懒,没错直接把从前开发WhiteHole预备好的模板工程拿了过来。这个模板工程是根据人人开源做的。当然咱们在这个基础上做了改动,使得能够更加符合我的需求。

聊天机器人开发实战--(微信小程序+SpringCloud+Pytorch+Flask)【后端部分】

后台搭建

ok,对SpringCloud的服务的话,咱们其实就两个,一个是后台办理,还有一个是正经微信小程序的服务端。Python不提供直接的服务,都是经过Java程序调用的。

那么关于这个后台的搭建的话,能够看到我曾经的这两篇博文:

huterox.blog.csdn.net/article/det…

huterox.blog.csdn.net/article/det…

这边的话,我就不复述了,完结之后是这样的:

聊天机器人开发实战--(微信小程序+SpringCloud+Pytorch+Flask)【后端部分】

Python服务调用

之后是,调用咱们的Python服务,其实也便是咱们的算法,咱们要的作用是这样的:

咱们拜访的是SpringBoot程序

聊天机器人开发实战--(微信小程序+SpringCloud+Pytorch+Flask)【后端部分】
然后它调用到Flask程序,然后给到咱们的前端
聊天机器人开发实战--(微信小程序+SpringCloud+Pytorch+Flask)【后端部分】

那么这儿的完结的话,很简单,便是拿到nacos然后就好了。

package com.huterox.ikun.chat.service.impl;
import com.alibaba.nacos.api.naming.pojo.Instance;
import com.huterox.common.utils.R;
import com.huterox.ikun.chat.entity.Q.ChatQ;
import com.huterox.ikun.chat.entity.R.ChatR;
import com.huterox.ikun.chat.service.WChatService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cloud.client.ServiceInstance;
import org.springframework.cloud.client.discovery.DiscoveryClient;
import org.springframework.core.ParameterizedTypeReference;
import org.springframework.http.*;
import org.springframework.stereotype.Service;
import org.springframework.web.client.RestTemplate;
import java.util.List;
import java.util.Map;
@Service
public class WChatServiceImpl implements WChatService {
    private final RestTemplate restTemplate;
    private final DiscoveryClient discoveryClient;
    @Autowired
    public WChatServiceImpl(RestTemplate restTemplate, DiscoveryClient discoveryClient) {
        this.restTemplate = restTemplate;
        this.discoveryClient = discoveryClient;
    }
    @Override
    public R wChat(ChatQ chatQ) {
        String serviceName = "flaskService";
        ServiceInstance instance = discoveryClient.getInstances(serviceName).stream()
                .findFirst()
                .orElseThrow(() -> new RuntimeException("no available instances"));
        String url = String.format("http://%s:%d/message", instance.getHost(), instance.getPort());
        HttpHeaders headers = new HttpHeaders();
        headers.setContentType(MediaType.APPLICATION_JSON);
        HttpEntity<ChatQ> entity = new HttpEntity<>(chatQ, headers);
        ResponseEntity<Map<String, Object>> response = restTemplate.exchange(url, HttpMethod.POST, entity, new ParameterizedTypeReference<Map<String, Object>>() {});
        Map<String, Object> body = response.getBody();
        ChatR chatR = new ChatR ();
        chatR.setRes((String) body.get("res"));
        chatR.setSpendTime((Double) body.get("spend_time"));
        return  R.ok().put("chatR",chatR);
    }
}

Python算法服务

之后,是咱们的算法服务构建。 首先咱们的算法仍是从前的这个项目的基础上改动的: gitee.com/Huterox/gpt…

聊天机器人开发实战--(微信小程序+SpringCloud+Pytorch+Flask)【后端部分】
那么改动的当地的话,就两个当地:app.py,和controller.py
聊天机器人开发实战--(微信小程序+SpringCloud+Pytorch+Flask)【后端部分】

首先是controller:


import torch
import os
import argparse
from datetime import datetime
import logging
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from transformers import BertTokenizer
import torch.nn.functional as F
from flask_caching import Cache
PAD = '[PAD]'
pad_id = 0
def set_interact_args():
    """
    Sets up the training arguments.
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', default='0', type=str, required=False, help='生成设备')
    # parser.add_argument('--temperature', default=1, type=float, required=False, help='生成的temperature')
    # parser.add_argument('--topk', default=8, type=int, required=False, help='洛水K个我只饮一瓢')
    # parser.add_argument('--topp', default=0.9, type=float, required=False, help='最高积累概率')  #0
    parser.add_argument('--model_config', default='../GPT2/config/model_config_dialogue_small.json', type=str, required=False,
                        help='模型参数')
    parser.add_argument('--log_path', default='../GPT2/generatorlog/generator.log', type=str, required=False, help='interact日志存放位置')
    parser.add_argument('--voca_path', default='../GPT2/vocabulary/vocab_small.txt', type=str, required=False, help='挑选词库')
    # parser.add_argument('--dialogue_model_path', default=r'../GPT2/model/norm_model/poertymodel', type=str, required=False, help='模型途径')  #dialogue_model_path/
    parser.add_argument('--save_samples_path', default="../GPT2/sample/", type=str, required=False, help="保存谈天记录的文件途径")
    parser.add_argument('--repetition_penalty', default=1.0, type=float, required=False,
                        help="重复赏罚参数,若生成的对话重复性较高,可适当进步该参数")
    parser.add_argument('--seed', type=int, default=None, help='设置种子用于生成随机数,以使得训练的成果是确认的')
    # parser.add_argument('--max_len', type=int, default=128, help='每个utterance的最大长度,超过指定长度则进行切断')
    # parser.add_argument('--max_history_len', type=int, default=5, help="谈天的history的最大长度")
    parser.add_argument('--no_cuda', action='store_true', help='不运用GPU进行猜测')
    return parser.parse_args()
def create_logger(args):
    """
    将日志输出到日志文件和控制台
    """
    logger = logging.getLogger(__name__)
    logger.setLevel(logging.INFO)
    formatter = logging.Formatter(
        '%(asctime)s - %(levelname)s - %(message)s')
    # 创建一个handler,用于写入日志文件
    file_handler = logging.FileHandler(
        filename=args.log_path)
    file_handler.setFormatter(formatter)
    file_handler.setLevel(logging.INFO)
    logger.addHandler(file_handler)
    # 创建一个handler,用于将日志输出到控制台
    console = logging.StreamHandler()
    console.setLevel(logging.DEBUG)
    console.setFormatter(formatter)
    logger.addHandler(console)
    return logger
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
            logits: logits distribution shape (vocabulary size)
            top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    assert logits.dim() == 1  # batch size 1 for now - could be updated for more but the code would be less clear
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        # torch.topk()回来最终一维最大的top_k个元素,回来值为二维(values,indices)
        # ...表明其他维度由计算机自行揣度
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]  #增加了一个维度。newaxis作用和None是相同的,None是别名
        logits[indices_to_remove] = filter_value  # 关于topk之外的其他元素的logits值设为负无量
    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)  # 对logits进行递减排序
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0
        indices_to_remove = sorted_indices[sorted_indices_to_remove]
        logits[indices_to_remove] = filter_value
    return logits
def load_model(model_path):
    args = set_interact_args()
    args.cuda = torch.cuda.is_available() and not args.no_cuda
    device = 'cuda' if args.cuda else 'cpu'
    logger = create_logger(args)
    # 当用户运用GPU,而且GPU可用时
    logger.info('using device:{}'.format(device))
    os.environ["CUDA_VISIBLE_DEVICES"] = args.device
    model = GPT2LMHeadModel.from_pretrained(model_path)
    model.to(device)
    model.eval()
    return model,device,args
def GPTgetSentence(input_target,
                    temperature=1,
                    topK = 10,
                    topP = 0.9,
                    max_len = 128,
                    history = None,
                    max_history_len=5,
                    max_history = 100,
                    chat=False,
                    model_path = None,
                   ):
    """
    :param input_target:
    :param temperature:
    :param topK:
    :param topP:
    :param max_len:
    :param history:
    :param max_history_len: 参阅历史谈天记录
    :param max_history: 历史记录长度
    :param chat: 是否为谈天方式
    :return:
    """
    assert history!=None and max_history>max_history_len,"history不为空,max_history必须大于max_history_len"
    from .app import chat_model
    if(chat_model.get("model")):
        model, device, args = chat_model.get("model")
    else:
        model, device, args = load_model(model_path)
        chat_model['model'] = (model, device, args)
    tokenizer = BertTokenizer(vocab_file=args.voca_path)
    if args.save_samples_path:
        if not os.path.exists(args.save_samples_path):
            os.makedirs(args.save_samples_path)
        samples_file = open(args.save_samples_path + '/samples.txt', 'a', encoding='utf8')
        samples_file.write("谈天记录{}:\n".format(datetime.now()))
        # 存储谈天记录,每个utterance以token的id的方式进行存储
    text = input_target
    if args.save_samples_path:
        samples_file.write("user:{}\n".format(text))
    if(chat):
        if(max_history<len(history)):
            history = []
        history.append(tokenizer.encode(text))
    input_ids = [tokenizer.cls_token_id]  # 每个input以[CLS]为开头
    if(chat):
        for history_id, history_utr in enumerate(history[-max_history_len:]):
            input_ids.extend(history_utr)
            input_ids.append(tokenizer.sep_token_id)
    curr_input_tensor = torch.tensor(input_ids).long().to(device)
    generated = []
    # 最多生成max_len个token
    for _ in range(max_len):
        outputs = model(input_ids=curr_input_tensor)
        next_token_logits = outputs[0][-1, :]
        # 关于已生成的成果generated中的每个token添加一个重复赏罚项,下降其生成概率
        for id in set(generated):
            next_token_logits[id] /= args.repetition_penalty
        next_token_logits = next_token_logits / temperature
        # 关于[UNK]的概率设为无量小,也便是说模型的猜测成果不可能是[UNK]这个token
        next_token_logits[tokenizer.convert_tokens_to_ids('[UNK]')] = -float('Inf')
        filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=topK, top_p=topP)
        # torch.multinomial表明从候选集合中无放回地进行抽取num_samples个元素,权重越高,抽到的几率越高,回来元素的下标
        next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
        if next_token == tokenizer.sep_token_id:  # 遇到[SEP]则表明response生成完毕
            break
        generated.append(next_token.item())
        curr_input_tensor = torch.cat((curr_input_tensor, next_token), dim=0)
    history.append(generated)
    text = tokenizer.convert_ids_to_tokens(generated)
    if args.save_samples_path:
        samples_file.write("GPT:{}\n".format("".join(text)))
    return "".join(text)
if __name__ == '__main__':
    histroy = []
    model_path = "../GPT2/model/norm_model/poertymodel"
    print(GPTgetSentence("你好",1,10,0.9,128,histroy,5,100,False,model_path))

然后是咱们的app服务。

app

这儿的话,我先说一下有些坑在这个python傍边,咱们连接nacos运用的是这个:nacos-sdk-python。可是在我实践的运用傍边,发现这个玩意会不可思议下线,可是服务是正常的。可能是版本仍是什么问题,这个咱也不知道,也不敢说,最终查了查iusse,最终的话,写了个暂时的计划,具体说明原因的话,我这儿就不展开了。由于也不确认剖析的对不对,猜测应该是这样的。

import queue
import sys
import os
import threading
curPath = os.path.abspath(os.path.dirname(__file__))
rootPath = os.path.split(curPath)[0]
sys.path.append(rootPath)
import requests
from Server.controller import GPTgetSentence
import time
from flask import Flask, request, jsonify
from nacos import NacosClient
"""
这儿对原先的GPT2-play进行修改
"""
history_cache = {}
chat_model = {}
app = Flask(__name__)
# NacosClient.set_debugging()
client = NacosClient("127.0.0.1:8848", namespace="public")
app.config['JSON_AS_ASCII'] = False
q = queue.Queue()
lock = threading.Lock()
def init():
    """
    懒得改了,激活一下就好了
    :return:
    """
    start = time.time()
    chat_model_path = "../GPT2/model/norm_model/chatmodel"
    result = GPTgetSentence("你好", 1.2, 10, 0.95, 256,
                            [], 24, 100, True, chat_model_path
                            )
    end = time.time()
    print("激活完结~,耗时:",end-start)
# 界说处理心跳音讯的函数
def handle_heartbeat():
    while True:
        try:
            requests.get('http://127.0.0.1:8100/heartbeat')
            instance_info = q.get()
            client.add_naming_instance(instance_info['serviceName'], instance_info['ip'], instance_info['port'])
        except:
            if(not q.empty()):
                return
# 发动处理心跳音讯的专用线程
# t = threading.Thread(target=handle_heartbeat)
# t.start()
@app.route('/heartbeat')
def heartbeat():
    instance_info = {'serviceName': 'flaskService', 'ip': '127.0.0.1', 'port': 8100}
    lock.acquire()
    try:
        q.put(instance_info)
        time.sleep(2)
    finally:
        lock.release()
    return 'OK'
@app.route('/message',methods=['POST'])
def ikun_chat():
    user_input = request.json['msg']
    user_id = request.json['uid']
    history = history_cache.get(user_id,[])
    chat_model_path = "../GPT2/model/norm_model/chatmodel",
    start = time.time()
    result = GPTgetSentence(user_input, 1.2, 10, 0.95, 256,
                            history, 24, 100, True, chat_model_path
                            )
    end = time.time()
    response = {
        'res': result ,
        'spend_time': end - start
    }
    return jsonify(response)
if __name__ == '__main__':
    init()
    # 注册 Flask 应用到 Nacos 中
    client.add_naming_instance('flaskService', '127.0.0.1', 8100)
    is_start = True
    t = threading.Thread(target=handle_heartbeat)
    t.start()
    app.run(debug=False,port=8100)

总结

这个玩意,一个作孽能够当三个交,仍是能玩玩的。