注:
- 本文是依据吴恩达《LangChain for LLM Application Development》课程的学习笔记;
- 完好的课程内容以及示例代码/Jupyter笔记见:LangChain-for-LLM-Application-Development;
课程纲要
目前 LLM 基本上都有最大 Token 的约束,即约束每次对话中输入的最长的文字个数。目前常见的 gpt-3.5-turbo
模型支持的最大 Token 数是 4096,最强的 gpt-4
模型支持的最大 Token 数是 8192 。
本课程首要解说 LangChain 中的以下几种 memory 方法:
- ConversationBufferMemory:对话内容缓存,便利存储对话内容;
- ConversationBufferWindowMemory:依据对话的次数来操控回忆长度;
- ConversationTokenBufferMemory:依据 Token 数量来操控回忆长度;
- ConversationSummaryMemory:总结对话内容来减少token占用,从而有更长的回忆;
首要内容如下图:
初始化设置
import os
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file
import warnings
warnings.filterwarnings('ignore')
ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
llm = ChatOpenAI(temperature=0.0)
memory = ConversationBufferMemory()
# 创立一个对话,并传入 memory
conversation = ConversationChain(
llm=llm,
memory = memory,
# 会打印 LangChain 的 Prompt 信息,自己测验时能够翻开此选项
verbose=False
)
下面是运用 conversation 进行的三次对话,其中最后一句会询问榜首句中的姓名信息,依据输出可知对话过程中是能够记住上下文信息的。
# 运用 predict 函数开端对话
conversation.predict(input="Hi, my name is Andrew")
conversation.predict(input="What is 1+1?")
conversation.predict(input="What is my name?")
'Your name is Andrew, as you mentioned earlier.'
咱们运用 memory.buffer 获取对话的上下文信息,打印出的信息如下:
print(memory.buffer)
Human: Hi, my name is Andrew
AI: Hello Andrew, it's nice to meet you. My name is AI. How can I assist you today?
Human: What is 1+1?
AI: The answer to 1+1 is 2.
Human: What is my name?
AI: Your name is Andrew, as you mentioned earlier.
也可用经过 load_memory_variables 函数,获取对话前史,如下:
memory.load_memory_variables({})
{'history': "Human: Hi, my name is Andrew\nAI: Hello Andrew, it's nice to meet you. My name is AI. How can I assist you today?\nHuman: What is 1+1?\nAI: The answer to 1+1 is 2.\nHuman: What is my name?\nAI: Your name is Andrew, as you mentioned earlier."}
自定义 ConversationBufferMemory
上面是实在的对话过程中发生的是对话记载,咱们也能够经过 save_context 函数来预设一些对话内容,如下:
memory = ConversationBufferMemory()
memory.save_context({"input": "Hi"},
{"output": "What's up"})
print(memory.buffer)
Human: Hi
AI: What's up
也能够不断的进行追加对话内容,如下:
memory.save_context({"input": "Not much, just hanging"},
{"output": "Cool"})
print(memory.buffer)
Human: Hi
AI: What's up
Human: Not much, just hanging
AI: Cool
ConversationBufferMemory 能够很便利的记载对话的内容,在运用的时分会很便利。由于对话内容的不断添加以及 LLM 模型有最大 Token 的约束,所以对话不会无约束的传递给 LLM 进行运用。依照什么战略选取对话内容就变得比较重要了,下面就先介绍下滑动窗口的方法来记载对话内容了。
ConversationBufferWindowMemory
以滑动窗口的方法来记载对话内容,能够设置回忆对话的轮数。
from langchain.memory import ConversationBufferWindowMemory
# 创立 ConversationBufferWindowMemory 示例,而且设置回忆窗口为 1,及只能记住一次对话内容
memory = ConversationBufferWindowMemory(k=1)
memory.save_context({"input": "Hi"},
{"output": "What's up"})
memory.save_context({"input": "Not much, just hanging"},
{"output": "Cool"})
# 只会打印最近一次的对话内容
memory.load_memory_variables({})
{'history': 'Human: Not much, just hanging\nAI: Cool'}
下面在与 LLM 模型结合看一下是否会记住上下文的对话内容,还是上面和 Andrew 对话的内容,代码如下:
# 初始化
llm = ChatOpenAI(temperature=0.0)
memory = ConversationBufferWindowMemory(k=1)
conversation = ConversationChain(
llm=llm,
memory = memory,
verbose=False
)
# 多轮对话,并不会记住 Andrew 的姓名
conversation.predict(input="Hi, my name is Andrew")
conversation.predict(input="What is 1+1?")
conversation.predict(input="What is my name?")
"I'm sorry, I don't have access to that information. Could you please tell me your name?"
你能够经过修正 K 的值,来体会一下 LLM 能记住的内容。当然,你也能够将 verbose 设置为 Ture 来看一下 LangChain 内部是怎么规划 Prompot 的。开启后,输出如下:
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
Human: Hi, my name is Andrew
AI:
ConversationTokenBufferMemory
除了运用 ConversationBufferWindowMemory 方法之外,还能够 Token 的数量来约束回忆的大小。
# 安装 tiktoken
!pip install tiktoken
from langchain.memory import ConversationTokenBufferMemory
from langchain.llms import OpenAI
# 初始化 llm
llm = ChatOpenAI(temperature=0.0)
# 初始化 ConversationTokenBufferMemory,设置只能回忆 30 个 Token 以内的对话
memory = ConversationTokenBufferMemory(llm=llm, max_token_limit=30)
# 构造对话前史
memory.save_context({"input": "AI is what?!"},
{"output": "Amazing!"})
memory.save_context({"input": "Backpropagation is what?"},
{"output": "Beautiful!"})
memory.save_context({"input": "Chatbots are what?"},
{"output": "Charming!"})
# 打印对话回忆
memory.load_memory_variables({})
{'history': 'AI: Beautiful!\nHuman: Chatbots are what?\nAI: Charming!'}
经过日志输出能够看出,只记载了下半段的对话内容。
ConversationSummaryMemory
上面两种的回忆方法都是很精准的,可是能记载的内容有限。参阅人类的回忆方法,咱们很难完好具体的记住一件工作的所有细节,就像咱们很难叙说今日一天完好的流水一样。咱们一般只会回忆一次很长的对话的总结内容,ConversationSummaryMemory 就是做这件工作的。
当对话的 Token 数量超约束的时分,就会将上述的对话内容进行总结,而且把总结的内容当作上下文,并进行下一次的对话恳求。
from langchain.memory import ConversationSummaryBufferMemory
# 一段超长的对话内容,超过了设置的 100 最大 Token 数
schedule = "There is a meeting at 8am with your product team. \
You will need your powerpoint presentation prepared. \
9am-12pm have time to work on your LangChain \
project which will go quickly because Langchain is such a powerful tool. \
At Noon, lunch at the italian resturant with a customer who is driving \
from over an hour away to meet you to understand the latest in AI. \
Be sure to bring your laptop to show the latest LLM demo."
memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=100)
memory.save_context({"input": "Hello"}, {"output": "What's up"})
memory.save_context({"input": "Not much, just hanging"},
{"output": "Cool"})
memory.save_context({"input": "What is on the schedule today?"},
{"output": f"{schedule}"})
# 打印 memory 中的信息
memory.load_memory_variables({})
{'history': "System: The human and AI engage in small talk before discussing the day's schedule. The AI informs the human of a morning meeting with the product team, time to work on the LangChain project, and a lunch meeting with a customer interested in the latest AI developments."}
经过日志能够看出,总结的内容会放在 System 中而非之前的 Human 和 AI 字段中。
conversation = ConversationChain(
llm=llm,
memory = memory,
verbose=True
)
conversation.predict(input="What would be a good demo to show? in Chinese")
[1m> Entering new ConversationChain chain...[0m
Prompt after formatting:
[32;1m[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
Current conversation:
System: The human and AI discuss their schedule for the day, including a morning meeting with the product team, time to work on the LangChain project, and a lunch meeting with a customer interested in AI developments. The AI suggests showcasing their latest natural language processing capabilities and machine learning algorithms to the customer, and offers to prepare a demo for the meeting. The human asks what would be a good demo to show.
AI: Based on our latest natural language processing capabilities and machine learning algorithms, I suggest showcasing our chatbot that can understand and respond to complex customer inquiries in real-time. We can also demonstrate our sentiment analysis tool that can accurately predict customer emotions and provide personalized responses. Additionally, we can showcase our language translation tool that can translate text from one language to another with high accuracy. Would you like me to prepare a demo for each of these capabilities?
Human: What would be a good demo to show? in Chinese
AI:[0m
[1m> Finished chain.[0m
'关于咱们最新的自然言语处理能力和机器学习算法,我主张展现咱们的聊天机器人,它能够实时理解和答复杂乱的客户查询。咱们还能够展现咱们的情感剖析东西,它能够精确猜测客户的心情并供给个性化的回应。此外,咱们还能够展现咱们的言语翻译东西,它能够高精度地将文本从一种言语翻译成另一种言语。您想让我为每个功用准备一个演示吗?(Translation: 关于咱们最新的自然言语处理能力和机器学习算法,我主张展现咱们的聊天机器人,它能够实时理解和答复杂乱的客户查询。咱们还能够展现咱们的情感剖析东西,它能够精确猜测客户的心情并供给个性化的回应。此外,咱们还能够展现咱们的言语翻译东西,它能够高精度地将文本从一种言语翻译成另一种言语。您想让我为每个功用准备一个演示吗?)'
经过日志能够看出,LLM 回来的内容也已经超出最大 Token 数的约束,这个时分 ConversationSummaryMemory 还是会对对话内容进行再次总结,能够经过 load_memory_variables 输出对应的信息:
memory.load_memory_variables({})
{'history': 'System: The human and AI discuss their schedule for the day, including a morning meeting with the product team, time to work on the LangChain project, and a lunch meeting with a customer interested in AI developments. The AI suggests showcasing their latest natural language processing capabilities and machine learning algorithms to the customer, and offers to prepare a demo for the meeting. The AI recommends demonstrating their chatbot, sentiment analysis tool, and language translation tool, and offers to prepare a demo for each capability. The human asks for a demo in Chinese.'}
课程小结
本课程首要解说 LangChain 中的以下几种 memory 方法:
- ConversationBufferMemory:
- 对前史对话消息的一个包装器,用于提取变量中的对话前史消息。
- ConversationBufferWindowMemory:
- 这种回忆保存了一段时间内对话的交互列表。它只用最后k个相互作用。
- ConversationTokenBufferMemory:
- 此内存在内存中保留最近交互的缓冲区,并运用令牌长度而不是交互次数来确定何时刷新交互。
- ConversationSummaryMemory:
- 跟着时间的推移,这个回忆创立了对话的摘要。
除了上述提到的 memory 方法之外,LangChain 的官方网站中还供给了一些其他的回忆方法:
- 矢量数据存储器
- 存储文本(从对话或其他地方)矢量数据库和检索最相关的文本块。
- 实体回忆
- 运用LLM,它能够记住特定实体的细节。
除了上述的回忆方法之外,还能够一起运用多个内存。例如,会话回忆+实体回忆来回忆个体。当然,能够将会话存储在常规数据库中(例如键值存储或sql)或者向量数据库中。