本文已参加「新人创造礼」活动,一起开启创造之路。
几许使用
平面图形的面积
若平面域DDD由曲线y=f(x),y=g(x)(f(x)≥g(x)),x=a,x=b(a<b)y=f(x),y=g(x)(f(x)\geq g(x)),x=a,x=b(a<b)y=f(x),y=g(x)(f(x)≥g(x)),x=a,x=b(a<b)所围成,则
S=∫ab[f(x)−g(x)]dxS=\int^{b}_{a}[f(x)-g(x)]dxS=∫ab[f(x)−g(x)]dx
化成二重积分
S=∬D1d=∫badx∫g(x)f(x)dyS=\iint\limits_{D}1d \sigma =\int^{a}_{b}dx \int^{f(x)}_{g(x)}dyS=D∬1d=∫badx∫g(x)f(x)dy
若平面域DDD由曲线=(),=,=(<)\rho =\rho (\theta ),\theta =\alpha,\theta =\beta(\alpha<\beta)=(),=,=(<)所围成,则
S=12∫2()dS= \frac{1}{2}\int^{\beta}_{\alpha}\rho ^{2}(\theta )d \thetaS=21∫2()d
化成二重积分
S=∬D1d=∫d∫0()dS=\iint\limits_{D}1d \sigma =\int^{\beta}_{\alpha}d \theta \int^{\rho (\theta )}_{0}\rho d \rhoS=D∬1d=∫d∫0()d
旋转体体积
若平面域DDD由曲线y=f(x),(f(x)≥0),x=a,x=b(a<b)y=f(x),(f(x)\geq0),x=a,x=b(a<b)y=f(x),(f(x)≥0),x=a,x=b(a<b)所围成,则
区域DDD绕xxx轴旋转一周所得到的旋转体积为
Vx=∫abf2(x)dxV_{x}=\pi \int^{b}_{a}f^{2}(x)dxVx=∫abf2(x)dx
取一小段dx,(a<x<b)dx,(a<x<b)dx,(a<x<b),则这一小段绕xxx轴旋转的得到圆柱的高为dxdxdx,半径为f(x)f(x)f(x),因此体积为
dV=f2(x)dxdV=\pi f^{2}(x)dxdV=f2(x)dx
然后积分得到VxV_{x}Vx
区域DDD绕yyy轴旋转一周所得到的旋转体积为
Vy=2∫abxf(x)dxV_{y}=2 \pi \int^{b}_{a}xf(x)dxVy=2∫abxf(x)dx
取一小段dx,(a<x<b)dx,(a<x<b)dx,(a<x<b),则这一小段绕yyy轴旋转出来一个圆筒,将该圆筒在任意一处竖直截开,得到一个长方体,该长方体的宽为dxdxdx,高为f(x)f(x)f(x),长为2×2\pi x2x,因此体积为
dV=2xf(x)dxdV=2\pi xf(x)dxdV=2xf(x)dx
然后积分得到VyV_{y}Vy
关于任意的区域DDD绕ax+by=cax+by=cax+by=c旋转,得到的旋转体体积,能够考虑二重积分,即在DDD取dd \sigmad,该面积微元绕直线旋转得到一个环状体,该环状体的面积为dd \sigmad,长度为2r(x,y)2\pi r(x,y)2r(x,y),其间r(x,y)r(x,y)r(x,y)表示该面积微元到直线的间隔一般为r(x,y)=∣ax+by−c∣a2+b2\begin{aligned} r(x,y)=\frac{|ax+by-c|}{\sqrt{a^{2}+b^{2}}}\end{aligned}r(x,y)=a2+b2∣ax+by−c∣,因此该环状体体积为
V=2r(x,y)dV=2 \pi r(x,y)d \sigmaV=2r(x,y)d
对面积微元做二重积分即可得到全体体积,即
V=2∬Dr(x,y)dV=2\pi \iint\limits_{D}r(x,y)d \sigmaV=2D∬r(x,y)d
用该结论推绕x,yx,yx,y轴旋转的结论
区域DDD绕xxx轴旋转一周所得到的旋转体积为
V=2∬Dyd=2∫abdx∫0f(x)ydy=∫abf2(x)dxV=2\pi\iint\limits_{D}yd \sigma=2\pi \int^{b}_{a}dx \int^{f(x)}_{0}ydy=\pi \int^{b}_{a}f^{2}(x)dxV=2D∬yd=2∫abdx∫0f(x)ydy=∫abf2(x)dx
区域DDD绕yyy轴旋转一周所得到的旋转体积为
V=2∬Dxd=2∫abdx∫0f(x)xdy=2∫abxf(x)dxV=2\pi \iint\limits_{D}x d \sigma=2\pi \int^{b}_{a}dx \int^{f(x)}_{0}xdy=2\pi \int^{b}_{a}xf(x)dxV=2D∬xd=2∫abdx∫0f(x)xdy=2∫abxf(x)dx
曲线弧长
假如由直角坐标方程给出C:y=y(x),a≤x≤bC:y=y(x),a\leq x\leq bC:y=y(x),a≤x≤b
s=∫ab1+y′2dxs=\int^{b}_{a}\sqrt{1+y’^{2}}dxs=∫ab1+y′2dx
假如由参数方程给出C:{x=x(t)y=y(t),≤t≤C:\left\{\begin{aligned}&x=x(t)\\&y=y(t)\end{aligned}\right.,\alpha\leq t \leq \betaC:{x=x(t)y=y(t),≤t≤
s=∫x′2+y′2dts=\int^{\beta}_{\alpha}\sqrt{x’^{2}+y’^{2}}dts=∫x′2+y′2dt
假如由极坐标方程给出C:=(),≤C:\rho =\rho (\theta ),\alpha\leq \theta \betaC:=(),≤
s=∫2+′2ds=\int^{\beta}_{\alpha}\sqrt{\rho ^{2}+\rho ‘^{2}}d \thetas=∫2+′2d
直接带公式即可,没什么技巧
旋转体侧面积
S=2∫abf(x)1+f′2(x)dxS=2\pi \int^{b}_{a}f(x)\sqrt{1+f’^{2}(x)}dxS=2∫abf(x)1+f′2(x)dx
这儿去任意一小段dxdxdx,对应弧dSdSdS,则依据勾股定理,有
dS=(dx)2+(f′(x)dx)2=1+f′2(x)dxdS=\sqrt{(dx)^{2}+(f'(x)dx)^{2}}=\sqrt{1+f’^{2}(x)}dxdS=(dx)2+(f′(x)dx)2=1+f′2(x)dx
即
S=2∫abf(x)1+f′2(x)dx=2∫abf(x)dSS=2\pi \int^{b}_{a}f(x)\sqrt{1+f’^{2}(x)}dx=2\pi \int^{b}_{a}f(x)dSS=2∫abf(x)1+f′2(x)dx=2∫abf(x)dS
此处在曲线弧长的直角坐标方程就已经有提到
物理使用
压力,变力做功,引力
常考题型与典型例题
平面域面积和旋转体体积的计算
例1:设DDD是由曲线xy+1=0xy+1=0xy+1=0与直线y+x=0y+x=0y+x=0及y=2y=2y=2围成的有界区域,则DDD的面积为()
![[附件/Pasted image 20220901084351.png]]
S=∬D1d=∫12dy∫−y−1ydx=∫12(y−1y)dy=(12y2−lny)∣12=32−ln2\begin{aligned} S=\iint\limits_{D}1d \sigma&=\int^{2}_{1}dy \int^{- \frac{1}{y}}_{-y}dx\\&=\int^{2}_{1}(y- \frac{1}{y})dy\\ &=(\frac{1}{2}y^{2}-\ln y)\Big|^{2}_{1}\\ &= \frac{3}{2}-\ln 2 \end{aligned}S=D∬1d=∫12dy∫−y−y1dx=∫12(y−y1)dy=(21y2−lny)∣∣∣∣12=23−ln2
例2:设封闭曲线LLL的极坐标方程为r=cos3(−6≤≤6)r=\cos3\theta (-\frac{\pi}{6}\leq \theta \leq \frac{\pi}{6})r=cos3(−6≤≤6),则LLL所围平面图形的面积为()
![[附件/Pasted image 20220901090302.png]]
S=12∫2()d=2⋅12∫06cos23d=12∫06(1+cos6)d=12(+16sin6)∣06=12\begin{aligned} S= \frac{1}{2}\int^{\beta}_{\alpha}\rho^{2}(\theta )d \theta &=2\cdot\frac{1}{2}\int^{\frac{\pi}{6}}_{0}\cos ^{2}3\theta d \theta \\ &=\frac{1}{2}\int^{\frac{\pi}{6}}_{0}(1+\cos 6\theta )d \theta \\ &=\frac{1}{2}(\theta + \frac{1}{6}\sin 6\theta )\Big|^{\frac{\pi}{6}}_{0}\\ &= \frac{\pi}{12} \end{aligned}S=21∫2()d=2⋅21∫06cos23d=21∫06(1+cos6)d=21(+61sin6)∣∣∣∣06=12
例3:过点(0,1)(0,1)(0,1)作曲线L:y=lnxL:y=\ln xL:y=lnx的切线,切点为AAA,又 LLL与xxx轴交于BBB点,区域DDD由LLL与直线ABABAB围成,求区域DDD的面积及DDD绕xxx轴旋转一周所得旋转体的体积
![[附件/Pasted image 20220901093720.png]]
y−y0=1×0(x−x0)⇒1−lnx0=−1⇒x0=e2y-y_{0}=\frac{1}{x_{0}}(x-x_{0})\Rightarrow 1-\ln x_{0}=-1 \Rightarrow x_{0}=e^{2}y−y0=x01(x−x0)⇒1−lnx0=−1⇒x0=e2
或
y−1=k(x−0)⇒y=kx+1⇒{kx+1=lnxk=1x⇒x=e2y-1=k(x-0)\Rightarrow y=kx+1\Rightarrow \left\{\begin{aligned}&kx+1=\ln x\\&k=\frac{1}{x}\end{aligned}\right.\Rightarrow x=e^{2}y−1=k(x−0)⇒y=kx+1⇒⎩⎪⎨⎪⎧kx+1=lnxk=x1⇒x=e2
可知CCC点坐标为(e2,2)(e^{2},2)(e2,2)
S=∫1e2lnxdx−12(e2−1)2=2V=∫1e2ln2xdx−13⋅22⋅(e2−1)=23(e2−1)\begin{aligned} S&=\int^{e^{2}}_{1}\ln xdx- \frac{1}{2}(e^{2}-1)2=2\\ V&=\pi \int^{e^{2}}_{1}\ln ^{2}xdx- \frac{1}{3}\cdot \pi2^{2}\cdot (e^{2}-1)=\frac{2\pi}{3}(e^{2}-1) \end{aligned}SV=∫1e2lnxdx−21(e2−1)2=2=∫1e2ln2xdx−31⋅22⋅(e2−1)=32(e2−1)
例4:曲线y=∫0xtantdt(0≤x≤4)y=\int^{x}_{0}\tan tdt(0\leq x\leq \frac{\pi}{4})y=∫0xtantdt(0≤x≤4)的弧s=()s=()s=()
s=∫ab1+y′2dx=∫041+tan2xdx=∫04secxdx=ln(secx+tanx)∣04=ln(2+1)\begin{aligned} s=\int^{b}_{a}\sqrt{1+y’^{2}}dx&=\int^{\frac{\pi}{4}}_{0}\sqrt{1+\tan ^{2}x}dx\\ &=\int^{\frac{\pi}{4}}_{0}\sec xdx\\ &=\ln (\sec x+\tan x)\Big|^{\frac{\pi}{4}}_{0}\\ &=\ln (\sqrt{2}+1) \end{aligned}s=∫ab1+y′2dx=∫041+tan2xdx=∫04secxdx=ln(secx+tanx)∣∣∣∣04=ln(2+1)
物理使用
例5:一容器的内侧是由图中曲线绕yyy轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥12)x^{2}+y^{2}=2y(y\geq \frac{1}{2})x2+y2=2y(y≥21)与x2+y2=1(y≤12)x^{2}+y^{2}=1(y\leq \frac{1}{2})x2+y2=1(y≤21)衔接而成
(长度单位mmm,重力加速度gm/s2g m/s^{2}gm/s2,水的密度为103kg/m310^{3} kg/m^{3}103kg/m3)
![[附件/Pasted image 20220901100107.png|250]]
在x2+y2=1(y≤12,x≥0)x^{2}+y^{2}=1(y\leq \frac{1}{2},x\geq0)x2+y2=1(y≤21,x≥0)取一个dydydy的小薄片,则该小薄片绕yyy轴旋转的体积为
x2dy\pi x^{2}dyx2dy
其有用最基本的公式或二重积分都能做出来
V=2⋅∫−112x2dy=2⋅∫−112(1−y2)dy=94V=2\cdot \pi \int^{\frac{1}{2}}_{-1}x^{2}dy=2 \cdot \pi \int^{\frac{1}{2}}_{-1}(1-y^{2})dy=\frac{9\pi}{4}V=2⋅∫−121x2dy=2⋅∫−121(1−y2)dy=49
在x2+y2=1(y≤12)x^{2}+y^{2}=1(y\leq \frac{1}{2})x2+y2=1(y≤21)取一个dydydy的小薄片,则该小薄片到y=2y=2y=2的间隔SSS为
S=2−yS=2-yS=2−y
关于FFF,有
F=mg=Vg=103⋅x2⋅dy⋅gF=mg=\rho Vg=10^{3}\cdot \pi x^{2}\cdot dy \cdot gF=mg=Vg=103⋅x2⋅dy⋅g
关于x2+y2=2y(y≥12)x^{2}+y^{2}=2y(y\geq \frac{1}{2})x2+y2=2y(y≥21)同理,换一个方程就行
W=103g∫−112(1−y2)(2−y)dy+103g∫122(2y−y2)(2−y)dy=278⋅103g\begin{aligned} W&=10^{3}g\int^{\frac{1}{2}}_{-1}\pi(1-y^{2})(2-y)dy+10^{3}g \int^{2}_{\frac{1}{2}}\pi(2y-y^{2})(2-y)dy\\ &=\frac{27}{8}\cdot 10^{3}\pi g \end{aligned}W=103g∫−121(1−y2)(2−y)dy+103g∫212(2y−y2)(2−y)dy=827⋅103g
考虑一个薄层dydydy一般称为元素法(微元法)
例6:某闸口的形状与大小如图所示,其间yyy为对称轴,闸口的上部为矩形ABCDABCDABCD,DC=2mDC=2mDC=2m,下部由二次抛物线与线段ABABAB所围成,当水面与闸口的上端相平常,欲使闸口矩形接受的水压力与闸口下部接受的水压力之比为5:45:45:4,闸口矩形部分的高hhh应为多少
![[附件/Pasted image 20220901102043.png|150]]
F=PSF=PSF=PS
本题也是元素法,不做具体讲解
F1=2∫1h+1g(h+1−y)dy=2g[(h+1)y−y22]1h+1=gh2F2=2∫01g(h+1−y)ydy=2g[23(h+1)y32−25y52]01=4g(13h+215)\begin{aligned} F_{1}&=2\int^{h+1}_{1}\rho g(h+1-y)dy=2\rho g\left[(h+1)y- \frac{y^{2}}{2}\right]^{h+1}_{1}\\ &=\rho gh^{2}\\ F_{2}&=2\int^{1}_{0}\rho g(h+1-y)\sqrt{y}dy=2\rho g\left[\frac{2}{3}\left(h+1\right)y^{\frac{3}{2}}- \frac{2}{5}y^{\frac{5}{2}}\right]^{1}_{0}\\ &=4 \rho g\left(\frac{1}{3}h+ \frac{2}{15}\right) \end{aligned}F1F2=2∫1h+1g(h+1−y)dy=2g[(h+1)y−2y2]1h+1=gh2=2∫01g(h+1−y)ydy=2g[32(h+1)y23−52y25]01=4g(31h+152)
因此,由题意得
h24(13h+215)=54⇒h=2,h=13\frac{h^{2}}{4\left(\frac{1}{3}h+ \frac{2}{15}\right)}= \frac{5}{4}\Rightarrow h=2,h=\frac{1}{3}4(31h+152)h2=45⇒h=2,h=31
用Python的matplotlib绘图感觉有点费事,个人也没研究明白,暂时用GeoGebra绘图代替一下,所以最近的笔记绘图不会给出源代码了,假如有需要能够私信要一下GeoGebra源文件