相关项目链接:
Paddlenlp之UIE模型实战实体抽取使命【打车数据、快递单】
Paddlenlp之UIE分类模型【以情感倾向剖析新闻分类为例】含智能标示计划)
运用实践:分类模型大集成者[PaddleHub、Finetune、prompt]
Paddlenlp之UIE联系抽取模型【高管联系抽取为例】
PaddleNLP依据ERNIR3.0文本分类以中医疗查找检索词目的分类(KUAKE-QIC)为例【多分类(单标签)】
依据Ernie-3.0 CAIL2019法研杯要素识别多标签分类使命
本项目链接:
依据ERNIR3.0文本分类:WOS数据集为例(层次分类)
0.前语:文本分类使命介绍
文本分类使命是自然语言处理中最常见的使命,文本分类使命简单来说就是对给定的一个语句或一段文本运用文本分类器进行分类。文本分类使命广泛运用于长短文本分类、情感剖析、新闻分类、事情类别分类、政务数据分类、商品信息分类、商品类目猜测、文章分类、论文类别分类、专利分类、案件描绘分类、罪名分类、目的分类、论文专利分类、邮件主动标签、评论正负识别、药物反响分类、对话分类、税种识别、来电信息主动分类、投诉分类、广告检测、灵敏违法内容检测、内容安全检测、舆情剖析、话题符号等各类日常或专业领域中。
文本分类使命能够依据标签类型分为多分类(multi class)、多标签(multi label)、层次分类(hierarchical等三类使命,接下来咱们将以下图的新闻文本分类为例介绍三种分类使命的差异。
[外链图片转存失利,源站或许有防盗链机制,建议将图片保存下来直接上传(img-uoHW1SRg-1658974890557)(ai-studio-static-online.cdn.bcebos.com/851cef351a9…)]
PaddleNLP选用AutoModelForSequenceClassification, AutoTokenizer供给了便利易用的接口,可指定模型名或模型参数文件途径经过from_pretrained() 办法加载不同网络结构的预练习模型,并在输出层上叠加一层线性层,且相应预练习模型权重下载速度快、稳定。Transformer预练习模型汇总包括了如 ERNIE、BERT、RoBERTa等40多个干流预练习模型,500多个模型权重。下面以ERNIE 3.0 中文base模型为例,演示怎么加载预练习模型和分词器:
from paddlenlp.transformers import AutoModelForSequenceClassification, AutoTokenizer
num_classes = 10
model_name = "ernie-3.0-base-zh"
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_classes=num_classes)
tokenizer = AutoTokenizer.from_pretrained(model_name)
0.1 层次分类使命介绍
多标签层次分类使命指自然语言处理使命中,每个样本具有多个标签符号,而且标签调会集标签之间存在预定义的层次结构,多标签层次分类需求充分考虑标签集之间的层次结构联系来猜测层次化猜测成果。层次分类使命中标签层次结构分为两类,一类为树状结构,另一类为有向无环图(DAG)结构。有向无环图结构与树状结构差异在于,有向无环图中的节点或许存在不止一个父节点。在实际场景中,大量的数据如新闻分类、专利分类、学术论文分类等标签调集存在层次化结构,需求利用算法为文本主动标示更细粒度和更精确的标签。
层次分类问题能够被视为一个多标签问题,以下图一个树状标签结构(宠物为根节点)为例,假如一个样本归于美短虎斑,样本也天然地一起归于类别美国短毛猫和类别猫两个样本标签。本项目选用通用多标签层次分类算法,将每个结点的标签途径视为一个多分类标签,运用单个多标签分类器进行决议计划,以上面美短虎斑的比如为例,该样本包括三个标签:猫、猫##美国短毛猫、猫##美国短毛猫##美短虎斑(不同层的标签之间运用##作为分割符)。下图的标签结构标签调集为猫、猫##波斯猫、猫##缅因猫、猫##美国短毛猫、猫##美国短毛猫##美短加白、猫##美国短毛猫##美短虎斑、猫##美国短毛猫##美短起司、兔、兔##侏儒兔、兔##垂耳兔总共10个标签。
0.2 文本分类运用全流程介绍
接下来,咱们将按数据预备、练习、功能优化布置等三个阶段对文本分类运用的全流程进行介绍。
- 数据预备
假如没有已标示的数据集,引荐doccano数据标示东西,怎么运用doccano进行数据标示并转化成指定格局本地数据集详见文本分类使命doccano运用攻略。假如已有标示好的本地数据集,咱们需求依据不同使命要求将数据集收拾为文档要求的格局:多分类数据集格局要求、多标签数据集格局要求、层次分类数据集格局要求。
预备好数据集后,咱们能够依据现有的数据集规划或练习后模型体现挑选是否运用数据增强战略进行数据集扩充。
- 模型练习
数据预备完成后,能够开始运用咱们的数据集对预练习模型进行微调练习。咱们能够依据使命需求,调整可装备参数,挑选运用GPU或CPU进行模型练习,脚本默许保存在开发集最佳体现模型。中文使命默许运用”ernie-3.0-base-zh”模型,英文使命默许运用”ernie-2.0-base-en”模型,ERNIE 3.0还支撑多个轻量级中文模型,详见ERNIE模型汇总,能够依据使命和设备需求进行挑选。
首先咱们需求依据场景挑选不同的使命目录,详细能够见 多分类使命点击这里 多标签使命点击这里 层次分类使命点击这里
练习结束后,咱们能够加载保存的最佳模型进行模型测验,打印模型猜测成果。
- 模型猜测
在实际布置场景中,咱们通常不仅对模型的精度体现有要求,也需求考虑模型功能上的体现。咱们能够运用模型裁剪进一步压缩模型体积,文本分类运用已供给裁剪API对上一步微调后的模型进行裁剪,模型裁剪之后会默许导出静态图模型。
模型布置需求将保存的最佳模型参数(动态图)导出成静态图参数,用于后续的推理布置。
文本分类运用供给了依据ONNXRuntime的本地布置predictor,而且支撑在GPU设备运用FP16,在CPU设备运用动态量化的低精度加速推理。
文本分类运用一起依据Paddle Serving的服务端布置计划。
本项目首要解说:数据预备、模型练习、模型猜测部分,关于布置部分篇幅有限,感兴趣同学能够跑一跑试一试。
参阅链接:
[github.com/PaddlePaddl…github.com/PaddlePaddl…
1.文本分类使命doccano运用攻略【多分类、多标签、层次分类】
装置详细事宜参阅项目:
Paddlenlp之UIE分类模型【以情感倾向剖析新闻分类为例】含智能标示计划)
强烈引荐:数据标示渠道doccano—-简介、装置、运用、踩坑记载
这里就不对装置等进行重复解说,默许都会。
详细参阅项目:
PaddleNLP依据ERNIR3.0文本分类以中医疗查找检索词目的分类(KUAKE-QIC)为例【多分类(单标签)】
2.依据ERNIR3.0层次分类模型微调
以下是本项目首要代码结构及阐明:
├── train.py # 练习点评脚本
├── predict.py # 猜测脚本
├── export_model.py # 动态图参数导出静态图参数脚本
├── utils.py # 东西函数脚本
├── metric.py # metric脚本
├── prune.py # 裁剪脚本
├── prune_trainer.py # 裁剪trainer脚本
├── prune_config.py # 裁剪练习参数装备
├── requirements.txt # 环境依靠
└── README.md # 运用阐明
以层次分类揭露数据集WOS(Web of Science)为示例,在练习集上进行模型微调,并在开发集上验证。WOS数据集是一个两层的层次文本分类数据集,包括7个父类和134子类,每个样本对应一个父类标签和子类标签,父类标签和子类标签间具有树状层次结构联系。
程序运行时将会主动进行练习,点评,测验。一起练习进程中会主动保存开发集上最佳模型在指定的 save_dir 中,保存模型文件结构如下所示:
checkpoint/
├── model_config.json
├── model_state.pdparams
├── tokenizer_config.json
└── vocab.txt
NOTE:
如需恢复模型练习,则能够设置 init_from_ckpt , 如 init_from_ckpt=checkpoint/model_state.pdparams 。
如需练习中文文本分类使命,只需更换预练习模型参数 model_name 。中文练习使命引荐运用”ernie-3.0-base-zh”,更多可选模型可参阅Transformer预练习模型。
2.1.加载本地数据集
在许多情况,咱们需求运用本地数据集来练习咱们的文本分类模型,本项目支撑运用固定格局本地数据集文件进行练习。假如需求对本地数据集进行数据标示,能够参阅文本分类使命doccano数据标示运用攻略进行文本分类数据标示。本项目将以CAIL2018-SMALL数据集罪名猜测使命为例进行介绍怎么加载本地固定格局数据集进行练习:
!wget https://paddlenlp.bj.bcebos.com/datasets/wos_data.tar.gz
!tar -zxvf wos_data.tar.gz
!mv wos_data data
本地数据集目录结构如下:
data/
├── train.txt # 练习数据集文件
├── dev.txt # 开发数据集文件
├── test.txt # 可选,测验练习集文件
├── label.txt # 分类标签文件
└── data.txt # 可选,待猜测数据文件
train.txt(练习数据集文件), dev.txt(开发数据集文件), test.txt(可选,测验练习集文件)中 n 表明标签层次结构中最大层数,<level i 标签> 代表数据的第i层标签。输入文本序列及不同层的标签数据用’\t’分离隔,每一层标签中多个标签之间用’,’逗号分离隔。注意,关于第i层数据没有标签的,运用空字符”来表明<level i 标签>。
train.txt/dev.txt/test.txt 文件格局:
<输入序列1>'\t'<level 1 标签1>','<level 1 标签2>'\t'<level 2 标签1>','<level 2 标签2>'\t'...'\t'<level n 标签1>','<level n 标签2>
<输入序列2>'\t'<level 1 标签>'\t'<level 2 标签>'\t'...'\t'<level n 标签>
...
...
train.txt/dev.txt/test.txt 文件样例:
unintended pregnancy continues to be a substantial public health problem. emergency contraception (ec) provides a last chance at pregnancy prevention. several safe and effective options for emergency contraception are currently available. the yuzpe method, a combined hormonal regimen, was essentially replaced by other oral medications including levonorgestrel and the antiprogestin ulipristal. the antiprogestin mifepristone has been studied for use as emergency contraception. the most effective postcoital method of contraception is the copper intrauterine device (iud). obesity and the simultaneous initiation of progestin-containing contraception may decrease the effectiveness of some emergency contraception. Medical Emergency Contraception
the objective of this paper is to present an example in which matrix functions are used to solve a modern control exercise. specifically, the solution for the equation of state, which is a matrix differential equation is calculated. to resolve this, two different methods are presented, first using the properties of the matrix functions and by other side, using the classical method of laplace transform. ECE Control engineering
...
...
label.txt(层次分类标签文件)记载数据会集一切标签途径调集,在标签途径中,高层的标签指向底层标签,标签之间用’##’衔接,本项目挑选为标签层次结构中的每一个节点生成对应的标签途径。
label.txt 文件格局:
<level 1: 标签>
<level 1: 标签>'##'<level 2: 标签>
<level 1: 标签>'##'<level 2: 标签>'##'<level 3: 标签>
...
...
label.txt 文件样例:
CS
ECE
CS##Computer vision
CS##Machine learning
ECE##Electricity
ECE##Lorentz force law
...
...
data.txt(可选,待猜测数据文件)
data.txt 文件格局:
<输入序列1>
<输入序列2>
...
data.txt 文件样例:
<输入序列1>
<输入序列2>
...
previous research exploring cognitive biases in bulimia nervosa suggests that attentional biases occur for both food-related and body-related cues. individuals with bulimia were compared to non-bulimic controls on an emotional-stroop task which contained both food-related and body-related cues. results indicated that bulimics (but not controls) demonstrated a cognitive bias for both food-related and body related cues. however, a discrepancy between the two cue-types was observed with body-related cognitive biases showing the most robust effects and food-related cognitive biases being the most strongly associated with the severity of the disorder. the results may have implications for clinical practice as bulimics with an increased cognitive bias for food-related cues indicated increased bulimic disorder severity. (c) 2016 elsevier ltd. all rights reserved.
posterior reversible encephalopathy syndrome (pres) is a reversible clinical and neuroradiological syndrome which may appear at any age and characterized by headache, altered consciousness, seizures, and cortical blindness. the exact incidence is still unknown. the most commonly identified causes include hypertensive encephalopathy, eclampsia, and some cytotoxic drugs. vasogenic edema related subcortical white matter lesions, hyperintense on t2a and flair sequences, in a relatively symmetrical pattern especially in the occipital and parietal lobes can be detected on cranial mr imaging. these findings tend to resolve partially or completely with early diagnosis and appropriate treatment. here in, we present a rare case of unilateral pres developed following the treatment with pazopanib, a testicular tumor vascular endothelial growth factor (vegf) inhibitory agent.
...
2.2模型猜测
#单卡练习
!python train.py --early_stop --epochs 5 --warmup --save_dir "./checkpoint" --batch_size 32 --dataset_dir "data/wos_data"
输出成果部分展现:
[2022-07-27 17:54:18,773] [ INFO] - global step 1870, epoch: 2, batch: 930, loss: 0.04018, micro f1 score: 0.56644, macro f1 score: 0.04182, speed: 1.79 step/s
[2022-07-27 17:54:24,434] [ INFO] - global step 1875, epoch: 2, batch: 935, loss: 0.03838, micro f1 score: 0.56670, macro f1 score: 0.04185, speed: 1.79 step/s
[2022-07-27 17:54:29,539] [ INFO] - global step 1880, epoch: 2, batch: 940, loss: 0.03892, micro f1 score: 0.56682, macro f1 score: 0.04187, speed: 1.98 step/s
[2022-07-27 17:55:27,020] [ INFO] - eval loss: 0.03925, micro f1 score: 0.59396, macro f1 score: 0.04428
[2022-07-27 17:55:27,021] [ INFO] - Current best macro f1 score: 0.04428
[2022-07-27 17:55:28,033] [ INFO] - tokenizer config file saved in ./checkpoint/tokenizer_config.json
[2022-07-27 17:55:28,034] [ INFO] - Special tokens file saved in ./checkpoint/special_tokens_map.json
[2022-07-27 17:55:30,385] [ INFO] - global step 1885, epoch: 3, batch: 5, loss: 0.03854, micro f1 score: 0.64000, macro f1 score: 0.04778, speed: 0.16 step/s
[2022-07-27 17:55:31,980] [ INFO] - global step 1890, epoch: 3, batch: 10, loss: 0.03603, micro f1 score: 0.63455, macro f1 score: 0.04747, speed: 6.57 step/s
[2022-07-27 17:55:33,539] [ INFO] - global step 1895, epoch: 3, batch: 15, loss: 0.03707, micro f1 score: 0.62945, macro f1 score: 0.04679, speed: 6.73 step/s
[2022-07-27 17:55:35,138] [ INFO] - global step 1900, epoch: 3, batch: 20, loss: 0.03549, micro f1 score: 0.62788, macro f1 score: 0.04674, speed: 6.56 step/s
[2022-07-27 17:55:36,823] [ INFO] - global step 1905, epoch: 3, batch: 25, loss: 0.03838, micro f1 score: 0.62448, macro f1 score: 0.04646, speed: 6.20 step/s
[2022-07-27 17:55:38,457] [ INFO] - global step 1910, epoch: 3, batch: 30, loss: 0.03717, micro f1 score: 0.62339, macro f1 score: 0.04635, speed: 6.42 step/s
[2022-07-27 17:55:40,075] [ INFO] - global step 1915, epoch: 3, batch: 35, loss: 0.04115, micro f1 score: 0.62302, macro f1 score: 0.04632, speed: 6.48 step/s
[2022-07-27 17:55:41,742] [ INFO] - global step 1920, epoch: 3, batch: 40, loss: 0.03842, micro f1 score: 0.61973, macro f1 score: 0.04607, speed: 6.29 step/s
[2022-07-27 17:55:43,423] [ INFO] - global step 1925, epoch: 3, batch: 45, loss: 0.03772, micro f1 score: 0.61950, macro f1 score: 0.04606, speed: 6.22 step/s
[2022-07-27 17:55:45,118] [ INFO] - global step 1930, epoch: 3, batch: 50, loss: 0.04074, micro f1 score: 0.61848, macro f1 score: 0.04602, speed: 6.17 step/s
样本集过大这边就部继续演示了,
可支撑装备的参数:
save_dir保存练习模型的目录;默许保存在当前目录checkpoint文件夹下。
dataset:练习数据集;默许为”cail2018_small”。
dataset_dir:本地数据集途径,数据集途径中应包括train.txt,dev.txt和label.txt文件;默许为None。
task_name:练习数据集;默许为wos数据集。
max_seq_length:ERNIE模型运用的最大序列长度,最大不能超过512, 若出现显存缺乏,请恰当调低这一参数;默许为512。
model_name:挑选预练习模型;默许为”ernie-2.0-base-en”,中文数据集引荐运用”ernie-3.0-base-zh”。
device: 选用什么设备进行练习,可选cpu、gpu、xpu、npu。如运用gpu练习,择运用参数gpus指定GPU卡号。
batch_size:批处理大小,请结合显存情况进行调整,若出现显存缺乏,请恰当调低这一参数;默许为32。
learning_rate:Fine-tune的最大学习率;默许为3e-5。
weight_decay:操控正则项力度的参数,用于避免过拟合,默许为0.00。
early_stop:挑选是否运用早停法(EarlyStopping);默许为False。
early_stop_nums:在设定的早停练习次序内,模型在开发集上体现不再上升,练习停止;默许为6。
epochs: 练习次序,默许为1000。
warmup:是否运用学习率warmup战略;默许为False。
warmup_steps:学习率warmup战略的steps数,假如设为2000,则学习率会在前2000 steps数从0渐渐增长到learning_rate, 而后再缓慢衰减;默许为2000。
logging_steps: 日志打印的距离steps数,默许5。
seed:随机种子,默许为3。
depth:层次结构最大深度,默许为2。
2.2.1 点评指标定义
对点评指标进行阐述一下:
criterion = paddle.nn.BCEWithLogitsLoss()
metric = MetricReport() #得到F1 值 假如需求修改参阅多分类文章
micro_f1_score, macro_f1_score = evaluate(model, criterion, metric,
dev_data_loader)
能够看到功能指标首要关于F1值,详细我们能够参阅文档
本次运用的是metrics.py文件从sklearn库导入的:
from sklearn.metrics import f1_score, classification_report
如有额定需求能够,运用metrics1.py文件从sklearn库导入的:
from sklearn.metrics import roc_auc_score, f1_score, precision_score, recall_score
import numpy as np
from sklearn.metrics import roc_auc_score, f1_score, precision_score, recall_score
from paddle.metric import Metric
class MultiLabelReport(Metric):
"""
AUC and F1 Score for multi-label text classification task.
"""
def __init__(self, name='MultiLabelReport', average='micro'):
super(MultiLabelReport, self).__init__()
self.average = average
self._name = name
self.reset()
def f1_score(self, y_prob):
'''
Returns the f1 score by searching the best threshhold
'''
best_score = 0
for threshold in [i * 0.01 for i in range(100)]:
self.y_pred = y_prob > threshold
score = f1_score(y_pred=self.y_pred, y_true=self.y_true, average=self.average)
if score > best_score:
best_score = score
precison = precision_score(y_pred=self.y_pred, y_true=self.y_true, average=self.average)
recall = recall_score(y_pred=self.y_pred, y_true=self.y_true, average=self.average)
return best_score, precison, recall
def reset(self):
"""
Resets all of the metric state.
"""
self.y_prob = None
self.y_true = None
def update(self, probs, labels):
if self.y_prob is not None:
self.y_prob = np.append(self.y_prob, probs.numpy(), axis=0)
else:
self.y_prob = probs.numpy()
if self.y_true is not None:
self.y_true = np.append(self.y_true, labels.numpy(), axis=0)
else:
self.y_true = labels.numpy()
def accumulate(self):
auc = roc_auc_score(
y_score=self.y_prob, y_true=self.y_true, average=self.average)
f1_score, precison, recall = self.f1_score(y_prob=self.y_prob)
return auc, f1_score, precison, recall
def name(self):
"""
Returns metric name
"""
return self._name
详细细节参阅项目:
#多卡练习:
#unset CUDA_VISIBLE_DEVICES
#!python -m paddle.distributed.launch --gpus "0" train.py --early_stop --dataset_dir data
#运用多卡练习能够指定多个GPU卡号,例如 --gpus "0,1"
2.3 模型猜测
输入待猜测数据和数据标签对照列表,模型猜测数据对应的标签
运用默许数据进行猜测:
python predict.py --params_path ./checkpoint/
也能够挑选运用本地数据文件data/data.txt进行猜测:
!python predict.py --params_path ./checkpoint/ --dataset_dir data/wos_data
输出成果:
input data: a high degree of uncertainty associated with the emission inventory for china tends to degrade the performance of chemical transport models in predicting pm2.5 concentrations especially on a daily basis. in this study a novel machine learning algorithm, geographically -weighted gradient boosting machine (gw-gbm), was developed by improving gbm through building spatial smoothing kernels to weigh the loss function. this modification addressed the spatial nonstationarity of the relationships between pm2.5 concentrations and predictor variables such as aerosol optical depth (aod) and meteorological conditions. gw-gbm also overcame the estimation bias of pm2.5 concentrations due to missing aod retrievals, and thus potentially improved subsequent exposure analyses. gw-gbm showed good performance in predicting daily pm2.5 concentrations (r-2 = 0.76, rmse = 23.0 g/m(3)) even with partially missing aod data, which was better than the original gbm model (r-2 = 0.71, rmse = 25.3 g/m(3)). on the basis of the continuous spatiotemporal prediction of pm2.5 concentrations, it was predicted that 95% of the population lived in areas where the estimated annual mean pm2.5 concentration was higher than 35 g/m(3), and 45% of the population was exposed to pm2.5 >75 g/m(3) for over 100 days in 2014. gw-gbm accurately predicted continuous daily pm2.5 concentrations in china for assessing acute human health effects. (c) 2017 elsevier ltd. all rights reserved.
predicted result:
level 1: CS
level 2:
----------------------------
input data: previous research exploring cognitive biases in bulimia nervosa suggests that attentional biases occur for both food-related and body-related cues. individuals with bulimia were compared to non-bulimic controls on an emotional-stroop task which contained both food-related and body-related cues. results indicated that bulimics (but not controls) demonstrated a cognitive bias for both food-related and body related cues. however, a discrepancy between the two cue-types was observed with body-related cognitive biases showing the most robust effects and food-related cognitive biases being the most strongly associated with the severity of the disorder. the results may have implications for clinical practice as bulimics with an increased cognitive bias for food-related cues indicated increased bulimic disorder severity. (c) 2016 elsevier ltd. all rights reserved.
predicted result:
level 1: Psychology
level 2:
----------------------------
input data: posterior reversible encephalopathy syndrome (pres) is a reversible clinical and neuroradiological syndrome which may appear at any age and characterized by headache, altered consciousness, seizures, and cortical blindness. the exact incidence is still unknown. the most commonly identified causes include hypertensive encephalopathy, eclampsia, and some cytotoxic drugs. vasogenic edema related subcortical white matter lesions, hyperintense on t2a and flair sequences, in a relatively symmetrical pattern especially in the occipital and parietal lobes can be detected on cranial mr imaging. these findings tend to resolve partially or completely with early diagnosis and appropriate treatment. here in, we present a rare case of unilateral pres developed following the treatment with pazopanib, a testicular tumor vascular endothelial growth factor (vegf) inhibitory agent.
predicted result:
level 1: Medical
level 2:
3.结论
相关项目链接:
Paddlenlp之UIE模型实战实体抽取使命【打车数据、快递单】
Paddlenlp之UIE分类模型【以情感倾向剖析新闻分类为例】含智能标示计划)
运用实践:分类模型大集成者[PaddleHub、Finetune、prompt]
Paddlenlp之UIE联系抽取模型【高管联系抽取为例】
PaddleNLP依据ERNIR3.0文本分类以中医疗查找检索词目的分类(KUAKE-QIC)为例【多分类(单标签)】
依据Ernie-3.0 CAIL2019法研杯要素识别多标签分类使命
本项目首要解说了层次分类使命、以及doccano标示攻略(关于多分类多标签问题),和对功能指标的简单讨论,由于需求练习好久暂时就没长时间跑程序,从猜测成果看来模型还能更佳精准,就交给后续的你了!
欢迎我们关注我的主页:aistudio.baidu.com/aistudio/us…
以及博客:blog.csdn.net/sinat_39620…