作者|strint
1
布景
深度学习结构编译优化时,需求先根据核算逻辑构成一个逻辑核算图,然后再改写核算图,最终履行改写后的核算图。其间生成逻辑核算图方式有两种。
一种核算图生成是根据 trace tensor 的,跟踪 tensor 的履行途径。tensor 履行时,根据函数重载,能够落到支撑 tensor 核算的结构自定义函数,该函数一般是 c++ 层的。c++ 层的自定义函数中,功用是用于生成一个 Operation 的符号表达。比方一个关于加法运算,trace 便是记载一个符号化的加法算子。如此一连串的运算就被转换了符号化的核算图。
别的一种核算图生成是根据 AST(抽象语法树) 解析的。在代码履行前,直接根据 Python 文本代码得到 Python AST,然后根据 AST 来翻译成核算图(也叫做中间代码 IR)。
Python(特指 CPython)解释器履行,第一阶段会先把 Python 源码解析成 AST,第二阶段根据 AST 生成和优化 ByteCode(字节码),第三阶段在虚拟机中履行 ByteCode。
根据 AST 解析的核算图生成,发生在这儿的第一阶段;根据 trace tensor 的核算图生成,发生在第三阶段之后。
TorchDynamo 特别的当地在于其作业在第二阶段,动态修正 Python ByteCode,这样第三阶段履行的已经是修正后的 ByteCode了。
2
TorchDynamo 概述
TorchDynamo 是 PyTorch 新实验的 JIT 编译接口,支撑运用 Python 在运行时修正动态履行逻辑,修正的时机是 CPython 的 ByteCode 履行前。这个思想相似 DynamoRIO(dynamorio.org) 项目,DynamoRIO 能够动态的修正 x86 机器码。
CPython 的每次函数调用会生成一个 Frame(或许叫 Stack),Frame 中带有的代码部分便是 ByteCode。CPython 运行时支撑根据现有的 Frame 去设置一个自定义的 Frame,然后后边履行的便是自定义的 Frame。
TorchDynamo 的作业原理便是在运行时设置一个自定义的 Frame,该 Frame 中的 ByteCode 支撑 CallBack 到 Python 层去修正。其供给的典型的修正接口是 FX Graph,也便是说 TorchDynamo 会剖析 ByteCode,生成对应的 FX Graph,然后供给 FX Graph 的接口供用户自定义核算图。这种做法有如下长处:
-
能够支撑一切的 Python 语法,因为假如在自定义 Frame 过程中的任何一点发现不支撑,都能够挑选不修正 Frame 而回退到原 Frame;
-
开支少,劫持发生在 Python 履行比较早的阶段(ByteCode 生成和优化阶段),而非 Python ByteCode 履行后的阶段,有时能够削减 Python ByteCode 的履行开支(猜想假如很屡次 ByteCode 层面的函数调用被交融层成一次函数调用,确实能够缩减开支);
-
能够做到不添加编译带来的延迟(之前的根据 tensor trace 或许 ast 解析的做法,一般都有先编译履行所以编译开支无法掩盖,可是改写 ByteCode 这个做法,猜想是能够在识别出热点代码后,单独开一个线程去做编译,而不影响主线程作业。Python ByteCode 改写的 API 中有这种延迟编译的样例,peps.python.org/pep-052 )。
之前核算图生成机制(根据 trace tensor、根据 AST 解析的)中的几个问题,得到了缓解:
-
存在无法静态化的操作,之前一般需求显式的移除静态化作用域,现在总是答应不做编译,直接履行原 Python 代码,这样使得静态化标示变得简略;
-
翻开静态图编译优化,之前编译时一般无法掩盖,现在有方法部分掩盖;
-
动态 shape 问题,因为有了编译时和运行时的掩盖,也能够得到缓解。
这种尽量优化、动态优化的设计,最大程度了照顾了代码开发的体验,让编译优化上手变得更简略了。这是 TorchDynamo 带来的最首要的好处。这种做法非常契合 PyTorch 的 Python First、Eager First、User Experience First的偏好。可是这个设计关于寻求最好的性能、最方便的静态化部署这两个目标并没有改进。
3
CPython 的规范履行流程
上文提到了 CPython 的履行从 Python 文本代码,到 AST,到 ByteCode。这儿用一个示例打开看一下。Python 的规范组件非常易用,能够在 Python 层用 ast 组件来检查 AST,能够用 compile 内置函数来编译 ByteCode,能够用 exec 体系函数来履行 ByteCode。咱们先在代码最初导入相关组件:
import ast
import dis
import sys
然后咱们构造一个 python 代码,能够看到 src_code 便是普通的字符串。其间包括了一段普通的 python 内置的乘法,一段深度学习的 tensor scalar 加法,最终一段是当时Python Frame 中的 ByteCode 相关目标的打印(用于一个查验,后边会提到)。
print("=== source code ===")
src_code = """
# normal python operation
x = 1
x = x * 2
# tensor operation
y = dl_framework.ones((1, 2))
z = x + y
print(z)
# print python frame
f = sys._getframe()
# print the code object
print(f.f_code)
"""
print(src_code)
然后运用 ast 组件来生成这段代码的 AST。
print("=== source code to ast ===")
# 把源代码解析成 AST
ast_obj = ast.parse(src_code)
# 打印 AST
print(ast.dump(ast_obj))
能够得到 AST,这儿展示的成果额外做了格式化,别的删减掉了和核算逻辑无关的打印 frame 的部分,代码和其 AST 的对应联系拜见注释。AST解析是纯文本层面的,dl_framework
还没有被 import 进来,AST解析仍然能够正常作业。AST 基本是一个多叉树的结构,每个节点对应一个表达式,节点子节点代表子表达式。以 x = x + 2
为例,Assign 是一个节点,是赋值运算,被赋值的是 x
,赋值的值是一个二元乘法运算。
Module(body=[
# x = 1
Assign(targets=[Name(id='x', ctx=Store())],
value=Constant(value=1, kind=None),
type_comment=None),
# x = x * 2
Assign(targets=[Name(id='x', ctx=Store())],
value=BinOp(left=Name(id='x', ctx=Load()), op=Mult(), right=Constant(value=2, kind=None)), type_comment=None),
# y = dl_framework.ones((1, 2))
Assign(targets=[Name(id='y', ctx=Store())],
# dl_framework.ones((1, 2))
value=Call(func=Attribute(value=Name(id='dl_framework', ctx=Load()),
attr='ones', ctx=Load()),
args=[Tuple(elts=[Constant(value=1, kind=None),
Constant(value=2, kind=None)], ctx=Load())], keywords=[]), type_comment=None),
# z = x + y
Assign(targets=[Name(id='z', ctx=Store())],
# x + y
value=BinOp(left=Name(id='x', ctx=Load()),
op=Add(),
right=Name(id='y', ctx=Load())), type_comment=None),
# print(z)
Expr(value=Call(func=Name(id='print', ctx=Load()), args=[Name(id='z', ctx=Load())], keywords=[])),
# 省掉了打印 frame 的代码
],
type_ignores=[]
)
Python AST 生成后,能够利用体系函数 compile
把它转成 ByteCode 字节码。解释器履行也存在编译的环节,只不过是编译成字节码。
print("=== ast to bytecode ===")
# 编译成 ByteCode
code_obj = compile(ast_obj, filename="", mode="exec")
print(code_obj)
# 展示 ByteCode 的语法糖
byte_obj = dis.Bytecode(code_obj)
print(byte_obj.dis())
print(code_obj)
的成果是 <code object <module> at 0x7ff79bb5c660, file "", line 3>
,这儿能够看到生成的 code object 目标的指针是 0x7ff79bb5c660
,后边咱们在履行字节码时,会再次看到这个指针。
print(byte_obj.dis())
的成果如下,每一行对应一条字节码,也即一条指令, 经过字面意义基本能够看出是在做什么:
# x = 1
3 0 LOAD_CONST 0 (1)
2 STORE_NAME 0 (x)
# x = x * 2
4 4 LOAD_NAME 0 (x)
6 LOAD_CONST 1 (2)
8 BINARY_MULTIPLY
10 STORE_NAME 0 (x)
# y = dl_framework.ones((1, 2))
7 12 LOAD_NAME 1 (dl_framework)
14 LOAD_METHOD 2 (ones)
16 LOAD_CONST 2 ((1, 2))
18 CALL_METHOD 1
20 STORE_NAME 3 (y)
# x = x + y
8 22 LOAD_NAME 0 (x)
24 LOAD_NAME 3 (y)
26 BINARY_ADD
28 STORE_NAME 4 (z)
# print(z)
9 30 LOAD_NAME 5 (print)
32 LOAD_NAME 4 (z)
34 CALL_FUNCTION 1
36 POP_TOP
# 省掉了打印 frame 的代码
得到 ByteCode 之后,就能够传递给 Python VM 履行了。在真实履行前,先做了一下 ByteCode 中指令的打印,实践 Python VM 履行时,也基本是这样遍历每一行指令,然后履行指令。能够幻想,假如这些指令被修正,就能够让 Python VM 履行自定义的指令了。
print("=== execute bytecode ===")
# print instruction
for instr in byte_obj:
print(instr.opname, instr.opcode)
# You can also do `import torch as dl_framework``
import oneflow as dl_framework
# execute bytecode
exec(code_obj)
字节码的履行成果如下。只需求在真实履行前,把 dl_framework
导入就好,然后能够看到 tensor 核算的成果,是契合预期的。
frame(或许叫 stack)是运行时的目标,对应一个函数调用的栈,在履行时被创立。frame 中要履行的指令便是之前创立的 ByteCode。
在运行时之前,像咱们之前看到的,存在一个编译时进行 AST 和 ByteCode 的编译,之前编译时生成的 code object 目标的指针是 0x7ff79bb5c660
。
在运行时,能够获取当时的 frame,然后经过 frame.f_code
拿到当时 frame 里面包括的 ByteCode(即 code object),能够发现它的指针便是之前编译时生成的那个。
# print(z) 的成果
tensor([[3., 3.]], dtype=oneflow.float32)
# 运行时获取当时 frame ,然后打印 frame 中的 ByteCode 目标的成果
# f = sys._getframe()
# print(f.f_code)
<code object <module> at 0x7f5cea7f1660, file "", line 3>
到此,窥见了一下 Python 源码到 AST, AST 到 ByteCode,ByteCode 到 Frame 履行这个默许的 Python 履行流程。TorchDynamo 用下图做了简略的介绍:
其间 foo 对应一个 Python 函数,即上文介绍的 Python Source Code。PyCodeObject 是上文介绍的 code object (ByteCode)在 C 代码层面对应的类。PyFrameObject 是上文介绍的 Frame 在 C 代码层面对应的类,它包括了代码段 PyCodeObject。_PyEval_EvalFrameDefault 对应上文介绍的 exec,它履行一个 Frame,即运行 Frame 带有的 PyCodeObject
。
现在咱们看一下 CPython 在 C 层面的履行 Frame 的完成,对应 _PyEval_EvalFrameDefault(github.com/python/cpyt… )。 它的主逻辑便是取 ByteCode 指令和履行指令(github.com/python/cpyt… ):
co = f->f_code; // 从 PyFrameObject* f 中取出 PyCodeObject* ,放到 co 中
names = co->co_names;
consts = co->co_consts;
fastlocals = f->f_localsplus;
freevars = f->f_localsplus + co->co_nlocals;
// 从 co 中取出第一条指令
first_instr = (_Py_CODEUNIT *) PyBytes_AS_STRING(co->co_code);
next_instr = first_instr;
#define NEXTOPARG() do { \
_Py_CODEUNIT word = *next_instr; \
opcode = _Py_OPCODE(word); \
oparg = _Py_OPARG(word); \
// 指向下一条指令
next_instr++; \
} while (0)
// 循环履行指令
for (;;) {
// 从当时的指令 next_instr 中获取 opcode
NEXTOPARG();
switch (opcode) {
// 履行 op code,拜见下个部分
}
}
每个指令类型对应一个 opcode,它是一个数值,履行 opcode(github.com/python/cpyt… ),这儿的 opcode 能够清晰的看到和之前咱们打印的 ByteCode 的类型对应联系:
#define TARGET(opcode) \
case opcode:
switch (opcode) {
// TARGET 便是一个 case
// load
TARGET(LOAD_FAST) {
PyObject *value = GETLOCAL(oparg);
if (value == NULL) {
format_exc_check_arg(PyExc_UnboundLocalError,
UNBOUNDLOCAL_ERROR_MSG,
PyTuple_GetItem(co->co_varnames, oparg));
goto error;
}
Py_INCREF(value);
PUSH(value);
FAST_DISPATCH();
}
// store
TARGET(STORE_FAST) {
PyObject *value = POP();
SETLOCAL(oparg, value);
FAST_DISPATCH();
}
// 二元加法
TARGET(BINARY_ADD) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *sum;
if (PyUnicode_CheckExact(left) &&
PyUnicode_CheckExact(right)) {
sum = unicode_concatenate(left, right, f, next_instr);
/* unicode_concatenate consumed the ref to left */
}
else {
sum = PyNumber_Add(left, right);
Py_DECREF(left);
}
Py_DECREF(right);
SET_TOP(sum);
if (sum == NULL)
goto error;
DISPATCH();
}
// 函数调用
TARGET(CALL_FUNCTION) {
PyObject **sp, *res;
PCALL(PCALL_ALL);
sp = stack_pointer;
res = call_function(&sp, oparg, NULL);
stack_pointer = sp;
PUSH(res);
if (res == NULL) {
goto error;
}
DISPATCH();
}
}
以上总结了 Python的默许履行流程。
4
TorchDynamo 的作业流程
TorchDynamo 在规范的 Python 履行流程中做的首要改动便是支撑修正 Frame 履行前的 ByteCode。咱们暂时不重视 AST 生成,看 Python 的履行流程,是 Python Source Code -> ByteCode -> Evaluate. TorchDynamo 支撑 Python Source Code -> ByteCode -> [ByteCode rewrite] -> Evaluate。
ByteCode rewrite 的作业方式是把一段 ByteCode 转成 FX Graph,然后调用用户自定义的 FX Graph 改写履行逻辑,生成一个能够经过编译的履行函数。然后把该段 ByteCode 替换成函数调用 ByteCode,而调用的函数便是经过编译的履行函数。然后完成编译优化的功用。
FX Graph 支撑了在 Python 层做代码改写,提高了写编译 Pass 的便利性,这儿不做深化,能够参阅资料1(
pytorch.org/docs/stable…)
和2(zhuanlan.zhihu.com/p/416165157…
ByteCode rewrite 发生在 ByteCode 履行前。同样的 Source Code,每次履行都会走到这个过程,都能够挑选是否进行 ByteCode rewrite,或许挑选进行什么样的 rewrite,还能够支撑 rewrite 成果的缓存和复用。这表现了 Dynamo 的动态性。
下面看一个 TorchDynamo 下 fn() 函数编译的的比如:
# 一个普通的函数
def fn(a, b):
x = a + b
x = x / 2.0
if x.sum() < 0:
return x * -1.0
return x
# torchdynamo 函数接口
with torchdynamo.optimize(custom_compiler):
fn(torch.randn(10), torch.randn(10))
fn() 函数对应的原始的 python ByteCode,和代码对应的联系拜见其间的注释:
# x = a + b
0 LOAD_FAST 0 (a)
2 LOAD_FAST 1 (b)
4 BINARY_ADD
6 STORE_FAST 2 (x)
# x = x / 2.0
8 LOAD_FAST 2 (x)
10 LOAD_CONST 1 (2.0)
12 BINARY_TRUE_DIVIDE
14 STORE_FAST 2 (x)
# if x.sum() < 0:
16 LOAD_FAST 2 (x)
18 LOAD_METHOD 0 (sum)
20 CALL_METHOD 0
22 LOAD_CONST 2 (0)
24 COMPARE_OP 0 (<)
26 POP_JUMP_IF_FALSE 36
# return x * -1.0
28 LOAD_FAST 2 (x)
30 LOAD_CONST 3 (-1.0)
32 BINARY_MULTIPLY
34 RETURN_VALUE
# return x
36 LOAD_FAST 2 (x)
38 RETURN_VALUE
经过 TorchDynamo 动态改写后的 ByteCode:
# x = a + b
# x = x / 2.0
# x.sum() < 0
# 上面两行被转换成了 __compiled_fn_0
# __compiled_fn_0 会回来 x 和 x.sum() < 0 组成的 tuple
0 LOAD_GLOBAL 1 (__compiled_fn_0)
2 LOAD_FAST 0 (a)
4 LOAD_FAST 1 (b)
6 CALL_FUNCTION 2
8 UNPACK_SEQUENCE 2
10 STORE_FAST 2 (x)
12 POP_JUMP_IF_FALSE 22
# x * -1.0 被转换成了 __compiled_fn_1
14 LOAD_GLOBAL 2 (__compiled_fn_1)
16 LOAD_FAST 2 (x)
18 CALL_FUNCTION 1
20 RETURN_VALUE
# return x
22 LOAD_FAST 2 (x)
24 RETURN_VALUE
能够看到新增了两个函数调用, __compiled_fn_0
和 __compiled_fn_1
,这两个函数对应的代码逻辑拜见 bytecode 中的注释。这两个函数对应的 fx graph 如下:
__compiled_fn_0:
opcode name target args kwargs
------------- ------- --------------------------- ---------------- --------
placeholder a_0 a_0 () {}
placeholder b_1 b_1 () {}
call_function add <built-in function add> (a_0, b_1) {}
call_function truediv <built-in function truediv> (add, 2.0) {}
call_method sum_1 sum (truediv,) {}
call_function lt <built-in function lt> (sum_1, 0) {}
output output output ((truediv, lt),) {}
__compiled_fn_1:
opcode name target args kwargs
------------- ------ ----------------------- ----------- --------
placeholder x_4 x_4 () {}
call_function mul <built-in function mul> (x_4, -1.0) {}
output output output (mul,) {}
在 ByteCode rewrite 的最终,TorchDynamo 为这一段代码的输入创立两个 Guard:
-
局部参数 a 必须是一个 Tensor
-
局部参数 b 必须是一个 Tensor
该 fn 函数被再次调用时,假如契合这两个条件,则能够命中缓存的 TrochDynamo 处理成果;不然下次 fn 履行时,会触发新的 ByteCode 剖析和变换。
别的,关于和 tensor 无关的、比较特别的 python 代码,其 ByteCode 会保持原状。这样就达到了不需求用户标示区域、自动寻觅优化时机的设计目标。
现在看下 TorchDynamo 履行的流程总结:
能够看到它把本来的 PyFrameObject 替换成了 Patched PyFrameObject,这个是 CPython 支撑的特性。这个 Patched PyFrameObject 中最首要的改动便是 Frame 中的 ByteCode (即 PyCodeObject)被修正了,本来的 PyCodeObject 变成了 Transformed PyCodeObject。而这个被改写的 PyCodeObject 如上文和上图所示,首要是部分 ByteCode 被替换成了调用被编译过函数。这个被编译过的函数,支撑自定义编译逻辑,当时默许的编译接口是 FX Graph。
这部分基本参阅了Dynamo的官方介绍(dev-discuss.pytorch.org/t/torchdyna… )。
5
TorchDynamo 修正 Python ByteCode 的完成
Python ByteCode 修正首要依赖 PEP 523(peps.python.org/pep-0523/) 供给的履行自定义 Frame Evaluation API。默许的 Eval Frame 逻辑入口函数是 _PyEval_EvalFrame,默许状况,它会直接调用 _PyEval_EvalFrameDefault() 来处理没被修正的 frame,可是假如发现存在一个自定义的 Eval Frame 函数,就会履行自动线的函数。
CPython _PyEval_EvalFrame 函数完成(github.com/python/cpyt… ),所以只要在 ByteCode 履行前,设置一个自定义的 eval frame 函数即可:
static inline PyObject*
_PyEval_EvalFrame(PyThreadState *tstate, struct _PyInterpreterFrame *frame, int throwflag)
{
EVAL_CALL_STAT_INC(EVAL_CALL_TOTAL);
if (tstate->interp->eval_frame == NULL) {
// 这是默许的 eval frame
return _PyEval_EvalFrameDefault(tstate, frame, throwflag);
}
// 假如存在 eval_frame 就会被履行
return tstate->interp->eval_frame(tstate, frame, throwflag);
}
能够看到 TorchDynamo 正是这么做的。第一步,在 Python 层根据 ContextManger 在进入 Dynamo 作用域时,就触发 eval_frame 的设置,完成(github.com/pytorch/pyt… ):
# torch._dynamo.optimize(...) 对应的 context manager.
class _TorchDynamoContext:
def __init__(
self,
callback: DynamoCallback,
):
super().__init__()
assert callable(callback) or callback is False or callback is None
self.callback: DynamoCallback = callback
self.prior: Union[Unset, DynamoCallback] = unset
def __enter__(self):
# 设置 eval_frame,记载之前的 eval frame
self.prior = set_eval_frame(self.callback)
def __exit__(self, exc_type, exc_val, exc_tb):
assert self.prior is not unset
# 恢复之前的 eval frame
set_eval_frame(self.prior)
这儿先大致以为设置的 DynamoCallback 对应一个自定义的 eval frame 所需的参数,通常是自定义的 eval frame 中所需的编译逻辑。
看下 set_eval_frame ,C 代码层面的完成(github.com/pytorch/pyt… ),它有点绕但最终走到了这儿(github.com/pytorch/pyt… ),也是设置 tstate->interp->eval_frame ,把 eval_frame 设置成自定义的 custom_eval_frame_shim:
// custom_eval_frame_shim 是自定义的 frame
inline static void enable_eval_frame_shim(PyThreadState* tstate) {
if (tstate->interp->eval_frame != &custom_eval_frame_shim) {
// First call
// 设置自定义的 eval frame
tstate->interp->eval_frame = &custom_eval_frame_shim;
}
}
现在回头看一下 PEP 523 供给的 Python JIT 编译器的自定义 frame 履行的样例,它供给了一个比较规范的模版(注意笔者对比如做了微调,原文有剩余和不合理的当地)。在自定义 eval frame 之前,一般还需求自定义一个寄存自定义 ByteCode 的数据结构,能够以为是自定义编译成果,比方样例中自定义编译成果包括3个字段:
-
exec_count, 代表改 frame 被履行的次数;
-
jit_failed, 代表之前 jit 编译是否失利过;
-
jit_code,代表 jit 编译过后的自定义 ByteCode;
据此,来看下自定义 eval frame 的样例:
# 输入原始的 frame
def eval_frame(frame, throw_flag):
# 获取 frame 中的 code object 中的寄存自定义编译成果的字段
pyjion_code = frame.code.co_extra
if not pyjion_code:
# 不如不存在,就设置一个空的默许值
frame.code.co_extra = PyjionJittedCode()
elif not pyjion_code.jit_failed:
# 假如之前 jit 履行成功
if pyjion_code.jit_code:
# 假如存在 jit 生成的 bytecode,就履行它
return pyjion_code.eval(pyjion_code.jit_code, frame)
elif pyjion_code.exec_count > 20000:
# 没有 jit 编译过,且 frame 被履行超过 20000 次,就尝试进行 jit 编译
# 假如不存在 jit 生成的 bytecode,就 jit 编译生成它
if jit_compile(frame):
# 假如 jit 编译成功,就履行 jit 编译的 bytecode
return pyjion_code.eval(pyjion_code.jit_code, frame)
else:
# 假如 jit 编译失利,就记载下,后边不再编译
pyjion_code.jit_failed = True
# 添加 frame 履行次数计数
pyjion_code.exec_count += 1
# 履行默许的 frame
return _PyEval_EvalFrameDefault(frame, throw_flag)
下面接着看 TorchDynamo 自定义 evale frame 的完成。在了解具体的自定义 frame 履行逻辑前,有个前置知识是 PyFrameObject 中的 PyCodeObject 为了履行自定义 frame 添加了一个 co_extra 字段,用来让用户放置自定义的数据,一般是寄存自定义编译成果(
peps.python.org/pep-0523/#e…
typedef struct {
...
void *co_extra; /* 自定义的 frame 需求的自定义数据 */
} PyCodeObject;
TorchDynamo 在自定义编译成果的类型是 CacheEntry,其间最重要的字段是 code,是被编译器修正后的 ByteCode:
typedef struct cache_entry {
// check the guards: lambda: <locals of user function>: bool
PyObject* check_fn;
// modified user bytecode (protected by check_fn's guards)
PyCodeObject* code;
// on a cache miss, linked list of next thing to try
struct cache_entry* next;
} CacheEntry;
现在看下自定义的 eval frame 逻辑 custom_eval_frame_shim(github.com/pytorch/pyt…):
static PyObject* _custom_eval_frame(PyThreadState* tstate, PyFrameObject* frame, int throw_flag, PyObject* callback) {
// 获取当时 frame 的 PyCodeObject 的 extra 字段用于后边设置
// 该字段用于放置自定义的编译成果
CacheEntry* extra = get_extra(frame->f_code);
// callback 即上文说的自定义编译器
// 运用 callback 进行 bytecode 的修正,即编译
// 编译成果写在了 frame->f_code中的 extra 中
PyObject* result =
call_callback(callback, (PyObject*)frame, cache_size(extra));
if (result != Py_None) {
// 缓存编译成果
extra = create_cache_entry(extra, result);
Py_DECREF(result);
// 履行自定义的 frame
// eval_custom_code 最终会调用 CPython 接口 _PyEval_EvalFrameDefault 来履行核算
// 其间 extra->code 中寄存的就自定义编译器生成的 ByteCode
// 所以最终 _PyEval_EvalFrameDefault 履行的是编译器生成的 ByteCode
return eval_custom_code(tstate, frame, extra->code, throw_flag);
}
}
inline static PyObject* eval_custom_code(PyThreadState* tstate, PyFrameObject* frame, PyCodeObject* custom_code, int throw_flag) {
// 运用 custom_code 创立一个自定义的 frame
PyFrameObject* shadow_frame = PyFrame_New(tstate, custom_code, frame->f_globals, NULL);
// 调用 Python 的 frame 履行自定义 frame
return _PyEval_EvalFrameDefault(tstate, shadow_frame, throw_flag);
}
到这儿,已经清楚了修正 Python ByteCode 履行的主线逻辑。
6
小结
这儿对 Python 的履行和 TorchDynamo 的首要原理做了初探,首要是自定义 Eval Frame 的完成技巧。其它相关的 Python ByteCode 规范,ByteCode 到 FX Graph 的转换,ByteCode 的改写等内容还没涉及。
参阅资料
-
tenthousandmeters.com/b (tenthousandmeters.com/blog/python…)
-
peps.python.org/pep-052 (peps.python.org/pep-0523/)
-
dev-discuss.pytorch.org (dev-discuss.pytorch.org/t/torchdyna…)
(原文:zhuanlan.zhihu.com/p/589115427…
欢迎 Star、试用 OneFlow 最新版别:
github.com/Oneflow-Inc…