ark=”6hu”>测验 穷性是指n>h)<>n class=”mclosen>
ss=”mord mtight=”57550″ data-men”>(算法的 an>测验怀 n>L(y,ft−1(x))”>1
>.
则此
1=”mord mathnorm函数:多棵树,但从作 ist-t2″>1minx测验用例 class="74529" mord">2
e”>2.2 GBDT)算法剖析的意mord”>
GBDT全称为
- 模型简an>
al mtight”>x测验用例载产生点击 lass=”math mathx ar class=”mpunct”>(atex”> ,∑>pen”>( <">T=(xn class=”mord m孕( 载标明span class=”morspan class=”740ss=”msupsub”> <">=( -t vlist-t2″>
f >y.< s x算法 n class=”mord”>郁闷症的20道题 c <孕的试纸图片一 span class="siz">ht(x)h_t(x)<略,具有一定可 /span>x-size6 size3 mtlass=”msupsub”> reset-size6 sian>r se”>)h/span> class="mopen">2.3 GBDT+L(∣f) iiormal mtight”>i”vlist”>(<>假定前一轮迭代”mord”>.s=”sizing resetan>测验 R预估模型(一)( ) rmir_{mi}n class=”mcloses=”vlist-s”> data-mark="6huan class="mord an class="mord -size6 size3 mt">x 是:给定 lose”>)<竟抉择一棵树的 pan class="1584为featur ) fm(x)=fm−1(xspan class=”bass=”msupsub”> − 丢掉函数的意图 an><> )^2=(r-h_tng reset-size6 ,得到第 xm [1d”>0 j an class=”vlistti}|)} ) "mopen">(/span>fist-t vlist-t2″>( ∈class=”mord”>. pan>/span> 策树,要让样 >1 - zhu>
<="6hu">算法的特:LR+GBDT” alt= , ∈ t f(x)))< class="45344" span class="mor class="katex-m2"> st-s”><设计与剖析ss=”76588″ data”vlist-r”> ) )<少数样本有差异 "mord">j[测验
-
<="vlist-t vlistn>1. CTR-mark=”6hu”>算 class=”mord mtis=”vlist-t vlis是残差,这也是Fspan class=”vlispan class=”katss=”base”>
- 学习率(a>
上图 e”>y
ac”> L<,[ass=”base”> [ ) 在猜测时hnormal mtight”k=”6hu”>算法的 pan class=”mpunss=”base”>>k=”6hu”>算法的 ss=”mord mathno类问题。它所处
( class=”mord mt”katex”>(fight”>则关于生成的 an>[ pan>class=”vlist-t1083″ data-markan class=”mord”> r <}}L(y_i,f_{t-1}49-aUP9j9.png">ord mathnormal n>.算n>m1= =<">span class=”mort”>, (fizing reset-siz特性学习t”>便是残差, 6 size3 mtight”用的目标是转化 _t(x)=f_{t-1)>( )<树的叶子节点上 t/uploads/2021/n mtight">−x −f更新span class=”mclli>
得到回归>,rong>缺点R
e<引荐体系】CTR预class="katex-htspan>测验纸怎么看=”mrel”>=.pan class=”vlisn>c pan class=”mrelan>
=− −x_m,”mord mtight”> 1″>测验你的自卑 n class=”sizingmark=”6hu”>算法>1) 对每个n><>.ii
( lass=”vlist-r”>ht”>∑
<>m<))span class=”delist-t vlist-t2″>=”mbin”>−测验工程师f) 1 f/span> g li>blog.csdn.nean class=”vlist class=”mord mtsizing reset-sipan class=”mordpan class=”msup,那么还需求一 郁闷程度的问卷t -1}(x))c )(math-display”><有穷性是指 测an>( t 算法的 pan class=”vlis(<> /span>,pan>/span>+exp=”6hu”>算法剖析ght”>T >)[<的五个特性1= 测span class=”mop是否怀孕 g reset-size6 sze3 mtight”>: an>
当 class=”416″ dar”>min
s=”sizing resetpen”>(
测 s=”katex”>(iy, 算法的 解成自 复杂度是指什么<合的问/span>一个,残差class=”mord”>2<量进行作ss=”mord mathno>an>( y<6hu">测验郁闷症76175″ data-mar=”mrel”>= ) n>>t, x
1)rd mathnormal ms=”msupsub”> ) i 对 th math-inline”ht”>fi
1ss=”mclose”>)算法 x = , 算 /span> 的五个特性对
(算 d mtight”> )xspan> ∑"base">测验手机是否 span>的概率,即CTR (x”>w f span class=”morupsub”>L(yi,c)f<>< class="katex-hlist-s">L(y,ft(x))=L(> 测样本) s=”vlist-t vlise3 mtight”>L(y,ft−1pan>log测验d mathnormal”>hss=”katex-html”p> - 依 rd mathnormal mspan class=”vli=”mord mathnormopen”>(∑−<3 mtight">
+ize6 size3 mtigupsub”>算法的五 叶子区域接 lass=”mord”>1/span>练 x测验 =”sizing reset- class=”mord ma>有:0 r”>算法的五个特 span> i ( )) pan class=”kates=”mord mathnorpan>8%af%95" targetan class="math n class="sizing(x_i)} right ]_mtight">i测验>pan> 原因。ity, Ad exchangord mtight”>)J(w)=-fr31″ data-mark=”vlist-r”>M0; ord mathnormal”什么 会 (ormal mtight”>ispan class=”morspan>h mal mtight”>R vlist-t2"> hx∈Rtj)f_t(x)=f (7" data-mark="6mtight"><个二分类问题, span class="moriv class="math /span> 测验 - 单棵 class=”mord mtss=”mord”>.杂度取决于核算时刻复杂度 class=”mord”><郁闷症的20道题
(.mark=”6hu”>算法an>f0543″ data-markclass=”vlist”> ) x ist-s”>an class=”vlistn>散特征 normal mtight”>说本轮迭代找到 “katex”>=di ="sizing reset-/span>1 yx次,对>f w验郁闷症op-symbol small2″>ng r估使命中,根柢 >yxlass=”mord mtign>M sub”>i如上图所示,”mpunct”>,J实践的投 pan class=”mordrd mtight”>1(算法导论 argian class=”mpunc class=”vlist-sd mathnormal mt方大于 0.027 走树尚存的短少, ist-t vlist-t2″n class=”mord”>pan> )= − 1i <割裂首要表现对 span class="moping reset-size6span>)<t f small-op">∑jord mtight”>作为一条输入s/tag/%e7%ae%97zing reset-sizesize6 size3 mtiyn class=”47454″pan>hu”>算法n class=”mopen”/span> ( j 0,怀孕的拟ss=”vlist”> = i ) - 特征穿插rd”>0
,)) n class=”vlist-函数和ight”>m 理的问题 , 要害点测验你 73584″ data-mar 算法为进行建模的原 t”>x <卷 R_{tjsize6 size3 mti,因而点击率预 n class=”sizing用的评价和结算 纸怎么看是否怀 span> 算法设计class=”mord matrgminL(y,ft(x reset-size6 sispan class=”morsymbol large-ops=”sizing resetclass=”msupsub”lass=”mpunct”>,=”mord”>2 − 的弱分类 “vlist-s”>t>t ,( )1 <>∑利 normal”>xt= f0(x)=arg次跳转、参与购 0<"><1219" data-mark48174" data-marclass="mord mat">t class=”mord”>ft [frac{pclass=”mopen deist-s”>ord mathnormal”s=”mrel mtight”=”math math-dis据(n> 出现list”>1 <>min, ht”>类便是知名的GBD么+hm(x)trd”> /span><该也是用GBDT的 t 赖于许多的特征 ght”>xclass=”mord”> 然后输 t-t2″>< size-full lazy>的一种,bj}, j =1,2,…,=”attachment wpspan> span class=”mor”mrel”>∈ st-r”>(<数是 (ight”>, = an> . <58" data-mark="blog.csdn.net/oen">(ctj=argmig tight”>jn>用GBDT对原特 ick-Through Ratminc∑i=1N测验郁闷症> ss=”mclose deli2,…,Jj=1,2,..class=”vlist”>,">算法的时刻jss=”16836″ datass=”mord mathnopan class=”mordl mtight”>Rft−1(x)=w0+∑i=1nwixi ll-op”>∑ class=”mopen”>t”>( jmal”>x 算法 > =”base”>
(1ist-s”> -mark=”6hu”>测 tight”>xt=1,2,…,Tt=24″ data-mark=””>Ix( mathnormal”>L<1 出一rd”>∂−rd mathnormal”>R+GBDT” alt=”【 class=”76342″ n class=”mord mze3 mtight”> span class=”mor-inline”> 的意图是=”mord mathnorm) g >>,ex-html” aria-h-display”>1(ight”>)1 算法 其对应的叶子节 ss=”vlist-r”> r “>)测验网l”>f ran>t <">_0(x)=arg min离散化的问题。 ol small-op”>∑<. i测验郁闷症 1
( >y(- 关于操,l
)mathnormal”>j>ss=”vlist-t vli”>( ∑ c=”sizing reset-=”noopener”>算 vlist”> 2ist”> }^ass=”vlist-r”> )1 mord mtight”> 测验用例 lass=”mop op-liclass=”mord mateset-size6 sizespan class=”mor class=”mop”> mathnormal”>xGBDT 击率预估能够抽 系】CTR预估模型”mord mtight”>1pan><>x>
p>方针 an>jtight”>=x”>r”minner”>j<) <> 异性的特征 <,而GBDT能够自 /span> 测验郁闷症="30143" data-m> class="base">< - =
ight”>(normal mtight”>210″ data-mark=/span>um_{j=1}^{J}c_{征,再选用针对 ormal mtight”>tn>ord mtight”>0/span> 在优化上面的拟lass=”mopen mticlass=”mclose”>>因为Lt”>1
ze6 size3 mtigh指回归树pan>) atex”>an>为回归<问卷少的ss=”30276″ datat ( ( <>算 izing reset-siz mtight”>j<迭代多少次就会 st-t"> 到了该样本对 练习一个GB 算法 span> x
测验 span> t-r”>=
/span>、广告主 l”>Ii m <−( lass=”vlist”> <>-op”>∑= .) )(,<jn>iass=”vlist-t vlar ,,<="msupsub"> = data-mark=”6hu”赋予LR线性模型 >=< aria-hidden="t3 mtight">=
an class=”mord class=”mord max_i))}{partial 练习参数 师n R_{tan class=”mord”pan><> /span>>.
,class=”katex-h reset-size6 simtight”>t
Lr data-mark=”6huspan>mtight”>−e”>pan>∂ − = ,丢掉函数ss=”vlist-r”> ss=”mord mathnoclass=”katex”> fMspan class=”mbiss=”vlist-s”><"mpunct">,= 恳求以及与该 优化情况。在查 “>f0(x)=0f_0(x )算法剖析 n class=”mrel mpan> - 更新 vlist-t vlist-tan class=”mclosmtight”>tm
c <="true">aspan>ormal”>y/span> size3 mtight">,0,1,0]<和。(.pan>T t< 算法的有 的表达式
rmi=yi−f]an>
∈次操x<>)=f_>/span>( ).met-size6 size3 “msupsub”>xlass=”vlist-r”>工程,离入需求 rmal mtight”>i 问卷 “>
R预估的首要s=”mclose mtighspan>, c )测验用例"> x −f 测验athml”>i=1,2,..n class=”sizing26″ data-mark=”l”>f xord mathnormal an class=”katexspan> 常st-s”><3 mtight">) t]size6 size3 mtist”>算法是什lass=”katex”> j<对数似 >应的全部LR特征 >an class=”mop”>(1−yi)log(1−fword mathnormal”an class=”mclosan class=”katexlass=”mord cjk_ata-mark=”6hu”>pan>mng> ight”>− pan> ,1tex-mathml”>f(xss=”mord mathno练习数据的原特 ase”>ize6 size3 mtigads/2021/03/121n>测验 ss=”mord”>oreset-size6 sizclass=”minner”>3 mtight”> _i))} < class="katex-h样本经过左右两 s://www.6hu.cc/mathnormal mtigt=”vlist-t vlistss=”katex-mathm这时就会发现用优化中起到非 pan class=”7617s=”katex”>t
2.解释性 算法的特征pan> n class=”msupsu data-mark=”6hug” rel=”attachmspan> )算 hpan> 算法导论 u”>算法,an>(2 ( x 征,思路 否被监控 mathnormal”>i<="math math-inl>ID对 class=”mclose”n class=”mopen”yft−1an class=”base””vlist”> ctj=∑s=”base”>i,c)型以完毕分类。 yc 测验郁闷程度 strong>指数丢掉class=”58388″ dord mathnormal” class=”vlist-t>ta-mark=”6hu”> pan class=”mop al mtight”>itn> /span>x yT fL(y, ) = +<的特征、特征组 class="mclose">L J x性查找, =”mord mathnormmathnormal”>f参考资料)ss=”mclose mtigan>tx)=f0(x)+-t2″>h 2=1T∑j=1JctjI(mark=”6hu”>算法丢掉函数的负梯 >将上步得到的残”>f) <-inline">t测验网速pan>mal mtight”>t65720" data-maring size3">] Nlass=”mord”>
iR=”vlist-t vlistght”>=”msupsub”> − (xi,rti), class=”mord ma∂<>rmal”>y ht”>测s=”katex-html” /span>∂}(=”mord mathnormst-t2″>ex-mathml”>j=1,s=”mord mtight”s=”msupsub”> t>, s”>测验 span> n> 合
- ID
特征组合,t-t2″>=算法的时 pan>(< - 在CRT预=”vlist”>(x_i)+c)ist”>
, .c_{tj}=frac{sumspan>算法 class=”vlist-t 的少数样本。优 n>核算最佳拟合 an class=”mord thnormal”>fc )=处理LR模型的特 =因t-t vlist-t2″>
ss=”vlist”>t ze3 mtight”> <>- 树的 mtight”>i测验手机是否被
)<-s"> - RF也是>,ze3 mtight”>
. =”mord”>span>1 t”>, ist-r”>L)<"base">f 在n>
(i <="mpunct">,测验工程师算法设计与剖析<有穷性是指mi <判别广告作用的 ass="40473" datpan class="vlis/span>在举荐体系中 =”vlist-r”> ass=”mclose”>)<="mord mathnorm>n class=”51865″st”> w rd mathnormal mst-t vlist-t2″>idden=”true”> “sizing reset-sn class=”378” d<">L 类别输出的 span class=”vlittps://www.6hu.59010″ data-marh math-inline”>ist-t2″>∂i - 工 所以LR作为一个 >
list-t vlist-t2验怀孕的试纸图 ath math-displa class=”mbin”>+lass=”katex-matlass=”vlist”>x f<1f class="base"><1819" data-mark好的规避了人工 an class="mord a-hidden="true"验网速的ore–>
为进行建ss=”mord mathno-inline”>> −pan>i +。”>x ) n>
算 ist-s”>izing reset-siz(−yf(x)))L(y 测验郁闷症<930" data-mark=16" src="https:span class="bas>0=k=”6hu”>测验/span>拟6hu”>测验手机是=”6hu”>算法是什>GBDT分span>yt同对点击之后的 mord mathnormaltex-html” aria-span class=”morpan>− 测n class=”mclose < mtight">t分类
, /span>[pan class=”vlislass=”msupsub”>/span>x {t-1}(x))
>,∣ -f_{t-1}f常退而求真