前言
本文将着重于实操解说,关于yolov5-l的网络主题部分进行重构,因而将省掉掉原理部分的解说。若读者对原理部分感兴趣的话能够参阅论文【1】中的办法进行构建网络主体部分。本文中的网络主体架构是从bubbliiiing的 yoloV5 中剥离出来的结构。
结合了论文中的流程参数图以及bubbliiiing的 yoloV5 的YoloBody部分进行重构,我们能够自行更换掉YoloBody部分代码进行试验。代码在结束部分。
函数拆解
下图中的左侧表格中为论文中提出的办法,右侧为官方原版的yoloV5中的YoloBody部分,分析左右两表中的差异,咱们能够依据论文中的连接,将GSConv和VoV-GSCSP提取出来进行试验分析使用办法以及效果(SPPF&Concat&Upsample函数效果相同):
GSConv函数
import torch
import torch.nn as nn
import torch.nn.functional as F
def autopad(k, p=None): # kernel, padding
# Pad to 'same'
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Mish(nn.Module):
def __init__(self):
super().__init__()
def forward(self,x):
x = x * (torch.tanh(F.softplus(x)))
return x
class Conv(nn.Module):
# Standard convolution
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = Mish() if act else nn.Identity()
def forward(self, x):
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
return self.act(self.conv(x))
class GSConv(nn.Module):
# GSConv https://github.com/AlanLi1997/slim-neck-by-gsconv
def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
super().__init__()
c_ = c2 // 2
self.cv1 = Conv(c1, c_, k, s, None, g, act)
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
def forward(self, x):
x1 = self.cv1(x)
x2 = torch.cat((x1, self.cv2(x1)), 1)
# shuffle
# y = x2.reshape(x2.shape[0], 2, x2.shape[1] // 2, x2.shape[2], x2.shape[3])
# y = y.permute(0, 2, 1, 3, 4)
# return y.reshape(y.shape[0], -1, y.shape[3], y.shape[4])
b, n, h, w = x2.data.size()
b_n = b * n // 2
y = x2.reshape(b_n, 2, h * w)
y = y.permute(1, 0, 2)
y = y.reshape(2, -1, n // 2, h, w)
return torch.cat((y[0], y[1]), 1)
if __name__ == "__main__":
base_channels = 64
P3Shape = (1, 256, 80, 80)
P3 = torch.ones(P3Shape)
gsc = GSConv(base_channels * 4, base_channels * 4, 3, 2)
P = gsc(P3)
print(P.shape)
通过上述的代码咱们能够得到在GSConv的输入参数这边输入的维度为256,当k=3,s=2时,H和S将会降一半;当H和S为默认的1时则不变。
VoV-GSCSP函数
VoV-GSCSP函数是建立在GSConv函数上演变而来的,咱们结合论文中的流程参数表可知,在VoV-GSCSP函数中咱们仅需求保证输出与输出即可。
class GSBottleneck(nn.Module):
# GS Bottleneck https://github.com/AlanLi1997/slim-neck-by-gsconv
def __init__(self, c1, c2, k=3, s=1, e=0.5):
super().__init__()
c_ = int(c2*e)
# for lighting
self.conv_lighting = nn.Sequential(
GSConv(c1, c_, 1, 1),
GSConv(c_, c2, 3, 1, act=False))
self.shortcut = Conv(c1, c2, 1, 1, act=False)
def forward(self, x):
return self.conv_lighting(x) + self.shortcut(x)
class VoVGSCSP(nn.Module):
# VoVGSCSP module with GSBottleneck
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, 1, 1)
self.cv2 = Conv(c1, c_, 1, 1)
# self.gc1 = GSConv(c_, c_, 1, 1)
# self.gc2 = GSConv(c_, c_, 1, 1)
# self.gsb = GSBottleneck(c_, c_, 1, 1)
self.gsb = nn.Sequential(*(GSBottleneck(c_, c_, e=1.0) for _ in range(n)))
self.res = Conv(c_, c_, 3, 1, act=False)
self.cv3 = Conv(2 * c_, c2, 1) #
def forward(self, x):
x1 = self.gsb(self.cv1(x))
y = self.cv2(x)
return self.cv3(torch.cat((y, x1), dim=1))
if __name__ == "__main__":
base_channels = 64
P3Shape = (1, 256, 80, 80)
P3 = torch.ones(P3Shape)
VOV = VoVGSCSP(base_channels * 4, base_channels * 4)
P = VOV(P3)
YoloBady结构
由上述的网络根底函数部分的构建结合yoloV5经过 backbone 层后得到的feat1、feat1和 feat1(也即:P5、P4和P3)到最后网络的输出部分,能够得到从输入部分的H和W是坚持同P层相同,那么能够结合论文中的流程参数图以及输入输出的关系得到如下的流程参数图。
依据上文中流程表格参数图,我在重构的过程中省掉了S=3的设定(本人的显存不行),另外依据论文中的流程示意图,我暂时无法没有找到下图中的红圈部分的参数,若我们需求能够自行添加,输入输出坚持不变即可。
YoloBody部分
from torch import nn
from nets.CSPdarknet import CSPDarknet, SPPF, Concat, GSConv, VoVGSCSP
class YoloBody(nn.Module):
def __init__(self, anchors_mask, num_classes, phi, pretrained=False, input_shape=[640, 640]):
super(YoloBody, self).__init__()
depth_dict = {'n': 0.33, 's': 0.33, 'm': 0.67, 'l': 1.00, 'x': 1.33, }
width_dict = {'n': 0.25, 's': 0.50, 'm': 0.75, 'l': 1.00, 'x': 1.25, }
dep_mul, wid_mul = depth_dict[phi], width_dict[phi]
base_channels = int(wid_mul * 64) # 64
base_depth = max(round(dep_mul * 3), 1) # 3
# -----------------------------------------------#
# 输入图片是640, 640, 3
# 初始的基本通道是64
# -----------------------------------------------#
self.backbone = CSPDarknet(base_channels, base_depth, phi, pretrained)
self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
self.concat = Concat(dimension=1)
self.SPPF = SPPF(base_channels * 16, base_channels * 16) # 1024 ---> 1024
self.P5GSConv = GSConv(base_channels * 16, base_channels * 8) # 1,1024,20,20 ---> 1,512,20,20
self.P4VoV = VoVGSCSP(base_channels * 16, base_channels * 8) # 1,512,40,40 ---> 1,1024,40,40
"""
self.P4VoV = nn.Sequential(VoVGSCSP(base_channels * 16, base_channels * 8),
VoVGSCSP(base_channels * 8, base_channels * 8),
VoVGSCSP(base_channels * 8, base_channels * 8))
"""
self.P4GSConv = GSConv(base_channels * 8, base_channels * 4) # 1,512,40,40 ---> 1,256,40,40
self.Head1VoV = VoVGSCSP(base_channels * 8, base_channels * 4) # 1,512,80,80 ---> 1,256,80,80
"""
self.Head1VoV = nn.Sequential(VoVGSCSP(base_channels * 8, base_channels * 4),
VoVGSCSP(base_channels * 4, base_channels * 4),
VoVGSCSP(base_channels * 4, base_channels * 4))
"""
self.P3GSConv = GSConv(base_channels * 4, base_channels * 4, 3, 2) # 1,256,80,80 ---> 1,256,40,40
self.Head2VoV = VoVGSCSP(base_channels * 8, base_channels * 8) # 1,512,40,40 ---> 1,512,40,40
"""
self.Head2VoV = nn.Sequential(VoVGSCSP(base_channels * 8, base_channels * 8),
VoVGSCSP(base_channels * 8, base_channels * 8),
VoVGSCSP(base_channels * 8, base_channels * 8))
"""
self.Head2GSConv = GSConv(base_channels * 8, base_channels * 8, 3, 2) # 1,512,40,40 ---> 1,512,20,20
self.Head3VoV = VoVGSCSP(base_channels * 16, base_channels * 16) # 1,1024,20,20 ---> 1,1024,20,20
"""
self.Head3VoV = nn.Sequential(VoVGSCSP(base_channels * 16, base_channels * 16),
VoVGSCSP(base_channels * 16, base_channels * 16),
VoVGSCSP(base_channels * 16, base_channels * 16))
"""
self.yolo_head_P3 = nn.Conv2d(base_channels * 4, len(anchors_mask[2]) * (5 + num_classes), 1)
self.yolo_head_P4 = nn.Conv2d(base_channels * 8, len(anchors_mask[1]) * (5 + num_classes), 1)
self.yolo_head_P5 = nn.Conv2d(base_channels * 16, len(anchors_mask[0]) * (5 + num_classes), 1)
def forward(self, x):
P3, P4, P5 = self.backbone(x)
P5 = self.SPPF(P5)
P5 = self.P5GSConv(P5)
P5_Up = self.upsample(P5)
P4 = self.concat([P4, P5_Up])
P4 = self.P4VoV(P4)
P4 = self.P4GSConv(P4)
P4_Up = self.upsample(P4)
P3 = self.concat([P3, P4_Up])
head1 = self.Head1VoV(P3)
P3 = self.P3GSConv(head1)
P34_Cat = self.concat([P3, P4])
head2 = self.Head2VoV(P34_Cat)
PHG = self.Head2GSConv(head2)
PHG_Cat = self.concat([PHG, P5])
head3 = self.Head3VoV(PHG_Cat)
Out1 = self.yolo_head_P3(head1) # 1,255,80,80
Out2 = self.yolo_head_P4(head2) # 1,255,40,40
Out3 = self.yolo_head_P5(head3) # 1,255,20,20
return Out3, Out2, Out1
# if __name__ == "__main__":
# anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
# num_classes = 80
# phi = 's'
# model = YoloBody(anchors_mask, num_classes, phi, pretrained=False)
# x = torch.ones((1, 3, 640, 640))
# Out3, Out2, Out1 = model(x)
# print()
结束
因为本人能力有限若文中有疏忽还请多多纠正,感谢我们的阅览,希望本文对我们有所帮助,需求代码能够进入我的库房自取。结合bubbliiiing的代码和我重构的YoloBady即可。
参阅:
[1] 《Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicles》
[2] github.com/alanli1997/…
[3] www.6hu.cc/go//?target=htt…