用ChatGPT来了解ChatGPT
之前学习一个新技能, 想着要搞清楚这6个问题(来自陈皓介绍的学习方法):
- 1.这个技能呈现的布景, 初衷, 要到达什么样的方针或是要处理什么样的问题.
- 2.这个技能的优势和下风别离是什么, 或者说, 这个技能的trade-off是什么.
- 3.这个技能运用的场景.
- 4.技能的组成部分和要害点.
- 5.技能的底层原理和要害完结.
- 6.已有的完结和它之间的比照.
之前也写过比如:
- Jetpack Compose What and Why, 6个问题
- Why GraphQL? 6个问题
那么我就用向ChatGPT发问的方法来了解这个它.
PS: ChatGPT是支持中英文的. 两种言语我都试了, 得到的答案并不彻底相同. 其实乃至同一个问题重复问两遍, 得到的答案也并不彻底相同.
1.这个技能呈现的布景, 初衷, 要到达什么样的方针或是要处理什么样的问题.
Q: ChatGPT是什么?
A: ChatGPT 是一种由 OpenAI 练习的大型言语模型。它是依据 Transformer 架构的预练习言语模型,能够进行文本生成、文本分类、问答等多种 NLP 使命。
ChatGPT 被预练习在很多网络文本数据上,因而它能够对很多不同主题的问题作出有意义的答复。它被广泛运用于谈天机器人、虚拟帮手、智能客服等范畴。
Q: What’s ChatGPT?
A: ChatGPT is a conversational AI language model developed by OpenAI. It uses the latest advancements in
machine learning and deep learning to generate human-like responses to questions and prompts in natural language.
The model was trained on a diverse range of internet text, allowing it to have knowledge on a wide range of topics,
including history, science, sports, and much more. You can interact with ChatGPT by asking it questions or giving it prompts,
and it will generate a response based on its training.
2.这个技能的优势和下风别离是什么, 或者说, 这个技能的trade-off是什么.
Q: ChatGPT的优势和下风别离是什么?
A:
ChatGPT 的优势:
- 1.预练习:ChatGPT 是一个预练习的言语模型,因而不需求额定的练习数据和资源,能够快速进行言语处理使命。
- 2.准确性:ChatGPT 在很多网络文本数据上进行了练习,因而它能够生成高质量的言语。
- 3.多样性:ChatGPT 能够处理多种类型的言语使命,包含问答、对话生成、文本摘要等。
- 4.可扩展性:开发者能够依据需求调整和扩展 ChatGPT,以适应不同的言语使命。
ChatGPT 的下风:
- 1.误导性:由于 ChatGPT 是依据很多网络文本数据进行练习的,因而它或许生成过错的信息或被误导。
- 2.语境敏感性:ChatGPT 或许难以了解语境,导致生成的言语缺少语境信息。
- 3.生成内容操控:ChatGPT 生成的内容或许不适合某些特定场景,因而需求进行内容操控。
总的来说,ChatGPT 在高效性、准确性等方面有着明显的优势,但是在语境敏感性和生成内容操控等方面也存在一些下风。
(这儿我感觉英文的答复还弥补了它缺少创造性的特色, 所以在这儿弥补一下:)
Q: What are ChatGPT good at and bad at?
A:
ChatGPT and other conversational AI models are good at:
- Responding to open-ended questions: ChatGPT is trained on a large corpus of text, allowing it to generate coherent and contextually relevant responses to open-ended questions.
- Generating text: ChatGPT can generate text in response to a prompt, making it useful for tasks such as summarization and content creation.
- Handling multiple turns: ChatGPT is designed to handle multiple turns of conversation, making it well-suited for chat-based applications.
- Conversational Flow: ChatGPT has a good understanding of the flow of conversation, allowing it to generate responses that are natural and human-like.
However, ChatGPT and other conversational AI models are not perfect and have some limitations, including:
- Lack of common sense: ChatGPT lacks common sense knowledge and can generate responses that are factually incorrect or nonsensical.
- Bias: ChatGPT is trained on a large corpus of text from the internet, which can introduce biases into the model’s responses.
- Sensitivity to context: ChatGPT can struggle to understand the context of a conversation, leading to responses that are irrelevant or incorrect.
- Limited creativity: While ChatGPT can generate text, its responses can be limited and formulaic, lacking the creativity and originality of a human.
It’s important to keep these limitations in mind when using ChatGPT or other conversational AI models, and to use them as tools to support, rather than replace, human intelligence.
3.这个技能运用的场景.
Q: ChatGPT的运用场景?
A: ChatGPT 的运用场景如下:
- 问答体系:ChatGPT 能够作为一个高效的问答体系,关于一些常见的问题进行快速的答复。
- 谈天机器人:ChatGPT 能够作为一个谈天机器人,与用户进行自然言语对话。
- 文本生成:ChatGPT 能够生成各种文本,如新闻文章、产品阐明、出售信息等。
- 文本摘要:ChatGPT 能够对长篇文本进行摘要,以简化信息的了解。
- 主动问卷调查:ChatGPT 能够作为一个主动问卷调查东西,协助用户快速答复问卷。
- 言语翻译:ChatGPT 能够支持言语翻译,协助用户了解不同言语的信息。
这些仅仅是 ChatGPT 的部分运用场景,它的通用性使得它在许多其他运用场景中也有很好的体现。
Q: ChatGPT能够帮程序员写代码吗?
A: ChatGPT 本身不能直接写代码,但它能够生成代码模板、代码片段和代码文档,从而协助程序员进步功率。
例如,程序员能够输入需求,ChatGPT 能够生成相应的代码片段,程序员能够依据生成的代码片段进一步开发完好的代码。
然而,需求留意的是,生成的代码片段或许需求进一步修改和调试,以契合特定的需求和运用环境。因而,程序员仍需求具有代码编写的技能。
4.技能的组成部分和要害点.
Q: ChatGPT的技能组成部分和要害点?
A: ChatGPT 是一种依据 Transformer 模型的言语生成模型,它由 OpenAI 开发和练习。
主要技能组成部分和要害点如下:
- Transformer 模型:ChatGPT 运用的是 Transformer 模型,这是一种用于处理序列数据的神经网络模型。它经过多头留意力机制来学习文本间的联系,从而进步生成质量。
- 巨大的数据量:ChatGPT 是在大规模数据集上练习的,这对模型的准确性和生成质量起着至关重要的效果。
- 学习方针:ChatGPT 经过最大化与练习数据中配对的文本的概率来学习言语生成。
- 动态生成:ChatGPT 是一种动态生成模型,能够依据输入生成文本,并能够持续生成不断变化的序列。
这些技能组成部分和要害点使得 ChatGPT 能够生成高质量的言语,从而在自然言语处理、问答体系等范畴取得了杰出的运用效果。
5.技能的底层原理和要害完结.
Q: ChatGPT的底层原理和要害完结?
A: (这个问题第一次它用英文答复了, 也不知道是不是bug.)
ChatGPT is based on the transformer architecture and is trained using a variant of the Transformer architecture called GPT-3 (Generative Pre-trained Transformer 3). The key components and underlying principles of the model are:
- Self-Attention Mechanism: This allows the model to process information from different positions in the input sequence and calculate their importance for a prediction.
- Multi-Head Attention: This mechanism allows the model to attend to multiple input positions simultaneously and produce multiple attention values.
- Position-wise Feed-Forward Networks: This component allows the model to learn non-linear relationships between input and output.
- Pre-training: The model is trained on a large corpus of text data to generate predictions of the next word in a sequence based on the context provided.
- Fine-Tuning: Once the pre-training process is complete, the model can be fine-tuned on specific tasks, such as question-answering or text generation, by updating its parameters to better perform on that specific task.
Overall, ChatGPT leverages the vast amount of text data available on the internet and uses deep learning techniques to learn how to generate text that is relevant, coherent, and appropriate for a given context.
Q: ChatGPT的底层原理和要害完结? 能用中文答复吗
A: ChatGPT的基础是Transformer架构,它运用GPT-3(生成预练习Transformer 3)的变体进行练习。模型的要害组件和根本原理如下:
- 自留意力机制:它答应模型处理输入序列中不同方位的信息并计算它们对猜测的重要性。
- 多头留意力:该机制答应模型同时重视多个输入方位并产生多个留意值。
- 方位智能前馈网络:该组件答应模型学习输入和输出之间的非线性联系。
- 预练习:模型在很多的文本数据上进行练习,以依据提供的上下文生成序列中下一个单词的猜测。
- 微调:一旦预练习进程完结,模型能够在特定使命上进行微调,例如问答或文本生成,经过更新其参数以更好地履行该特定使命。
总体而言,ChatGPT利用互联网上可用的很多文本数据,并运用深度学习技能学习怎么生成与给定上下文相关、连接和适当的文本。
6.已有的完结和它之间的比照.
Q: ChatGPT的同等产品有哪些, 它们有什么差异?
A: ChatGPT 的同类产品包含:
- Google’s BERT
- Microsoft’s ELMO
- Facebook’s RoBERTa
这些模型与 ChatGPT 有一些相似之处,都是运用了自留意力机制的大型预练习言语模型。它们在自然言语处理范畴都有广泛的运用。
不同之处在于:模型的预练习数据集、模型的结构和模型的练习方法都有差异,这也是它们在言语使命上的体现有差异的原因。因而,选择哪个模型将取决于具体的运用场景.
Q: What are the alternatives of ChatGPT, and what are the differences between them and ChatGPT?
A: There are several alternatives to ChatGPT, including:
- GPT-2: GPT-2 (Generative Pre-trained Transformer 2) is an earlier version of ChatGPT that was released by OpenAI in 2019. GPT-2 is less powerful than ChatGPT, but still represents a significant advance in language model technology.
- GPT-3: GPT-3 (Generative Pre-trained Transformer 3) is a newer and more powerful version of ChatGPT that was released by OpenAI in 2020. GPT-3 is the largest language model ever developed and is capable of performing a wide range of language tasks.
- BERT: BERT (Bidirectional Encoder Representations from Transformers) is a language model developed by Google that is focused on understanding the context of a sentence. BERT is often used for tasks such as sentiment analysis and named entity recognition, but it is not designed to handle multiple turns of conversation like ChatGPT.
- ELMo: ELMo (Embeddings from Language Models) is a language model developed by AllenNLP that generates context-sensitive word representations. ELMo is often used in NLP tasks such as sentiment analysis and named entity recognition, but it is not designed to handle conversation like ChatGPT.
Each of these models has its own strengths and weaknesses, and the best model for a particular task will depend on the specific requirements of that task.
For example, if you are looking to build a conversational AI application, ChatGPT or GPT-3 would likely be the best choice due to their ability to handle multiple turns of conversation.
On the other hand, if you are looking to build a model for sentiment analysis or named entity recognition, BERT or ELMo would be a better choice.
Q: ChatGPT和Google的差异?
A: Google and ChatGPT are both developed by technology companies, but they serve different purposes.
Google is a search engine that provides information and answers to users’ queries by indexing and retrieving relevant web pages. On the other hand, ChatGPT is an AI-powered language model developed by OpenAI, which is capable of generating human-like text based on input prompt.
Some key differences between Google and ChatGPT are:
- Purpose: Google is designed to provide information and answers to user queries, while ChatGPT is designed to generate human-like text based on input prompt.
- Technology: Google uses algorithms and indexes to search and retrieve information from the web, while ChatGPT uses deep learning techniques and a large pre-trained language model to generate text.
- Capabilities: Google can provide a wide range of information and answers, but it relies on the information available on the web. ChatGPT, on the other hand, can generate text based on the input prompt, but it may not always be accurate or relevant.
- Interaction: Google interacts with users through a search interface, while ChatGPT interacts with users through a conversational interface.
In conclusion, both Google and ChatGPT are powerful technologies developed by technology companies, but they serve different purposes and have different capabilities and interactions.
Q: ChatGPT和Siri的比较?
A: Siri 和 ChatGPT 都是人机对话体系,但它们在功用和完结方面有很大的差异。
Siri 是苹果公司推出的一款语音助理软件,它能够经过语音或文本的方法与用户交互,并能够完结一些日常使命,例如查询天气、发送音讯、打电话等。Siri 是一个封闭体系,具有必定的语音辨认和自然言语处理才能,但功用有限。
相比之下,ChatGPT 是一个开放体系,能够经过 API 接口与各种运用程序集成。它是一种依据 GPT(Generative Pre-trained Transformer)的预练习言语模型,具有广泛的自然言语处理才能,包含问答、文本生成、言语翻译等。它的功用比 Siri 更加强大和灵敏。
总的来说,Siri 更适合个人运用,而 ChatGPT 更适合开发人员或企业在客户服务、市场营销等范畴中运用。
个人感触和总结
这个东西确实挺好用的, 至少关于本文这种根本的技能调研来说, 体现杰出.
我还试着让它比照一些比较相似的技能东西等, 尽管它的答复比较泛泛, 但是能够列出根本的pros和cons. (如果实在不满意能够多诘问几句.)
以后有文本输出类的作业能够让ChatGPT来帮助, 写博客也能够找它聊一聊. (想象你有一个无所不知的朋友.)
它比起搜索引擎的优势是它会考虑你们对话的上下文, 并且它给出高质量的单一答案, 也省去了挑选信息的时间.
至于让它写一些样板代码, 我仅仅浅玩了一下没有深度体验, 看上去确实比较套路. (也要或许我的发问技巧需求进一步提高.)
对学习成长的一点启发:
学习和成长应该更重视剖析力和创造力. 知识的累积, 搜索引擎早就帮咱们做好了, ChatGPT更进一步优化和挑选了, 人脑怎么拼得过智能机器.
人类的学习要点应该更重视于机器做不到的部分.
我也一直在考虑怎么写出对别人有价值的博客. 以后写博客应该多输出一点个人观点和经验收成, 如果仅仅客观事实的描绘, 那么岂不是能够量产了.
还有一点启发乃至能够拓宽到日常生活中: 有时候咱们没有得到想要的答案, 或许是咱们的问题不清晰, 或许跟咱们的发问技巧相关.
References
- chat.openai.com/chat
- 关于怎么发问题, 这儿有个资源能够参考一些比如awesome-chatgpt-prompts
- 按照惯例也有一个awesome repo: github.com/humanloop/a…