这篇博客记载了我处理自标示的方针检测数据集的进程,由于数据会集小方针占比较大,处理的方针是期望将数据会集图片切割成小块。进程相对比较繁琐,因而在此记载,以便有同样需求的同学参阅,也便利自己回顾。有任何问题或者有更好的办法,也期望在谈论区指出,共同进步。

labelme转voc

这个进程网上有很多的代码可供参阅,我运用下面代码作为转化。labelme标示的成果应该是一个文件夹里边既有图片,也有同名的txt文件提供标签信息。

Voc格局的数据遵循以下目录

VOC_ROOT #根目录\
 ├── JPEGImages # 寄存源图片\
 │  ├── aaaa.jpg\
 │  ├── bbbb.jpg\
 │  └── cccc.jpg\
 ├── Annotations # 寄存[xml]文件,与JPEGImages中的图片一一对应,解释图片的内容\
 │  ├── aaaa.xml\
 │  ├── bbbb.xml\
 │  └── cccc.xml\
 └── ImageSets\
 └── Main\
 ├── train.txt # txt文件中每一行包含一个图片的称号\
 └── val.txt

下面是转化的代码labelme2voc.py

import os
from typing import List, Any
import numpy as np
import codecs
import json
from glob import glob
import cv2
import shutil
from sklearn.model_selection import train_test_split
# 1.标签途径
labelme_imgpath = r""  # 原始labelme数据图片途径
labelme_annorpath = r""  #labelme数据标签途径(txt)
saved_path = r""  # 保存途径
isUseTest = True  # 是否创立test集
# 2.创立要求文件夹
if not os.path.exists(saved_path + "Annotations"):
    os.makedirs(saved_path + "Annotations")
if not os.path.exists(saved_path + "JPEGImages/"):
    os.makedirs(saved_path + "JPEGImages/")
if not os.path.exists(saved_path + "ImageSets/Main/"):
    os.makedirs(saved_path + "ImageSets/Main/")
# 3.获取待处理文件
files = glob(labelme_annorpath+ "*.json")
files = [i.replace("\", "/").split("/")[-1].split(".json")[0] for i in files]
#print(files)
# 4.读取标示信息并写入xml
for json_file_ in files:
    json_filename = labelme_annorpath + json_file_ + ".json"
    json_file = json.load(open(json_filename, "r", encoding="utf-8"))
    height, width, channels = cv2.imread(labelme_imgpath + json_file_ + ".jpg").shape
    with codecs.open(saved_path + "Annotations/" + json_file_ + ".xml", "w", "utf-8") as xml:
        xml.write('<annotation>\n')
        xml.write('\t<folder>' + 'WH_data' + '</folder>\n')
        xml.write('\t<filename>' + json_file_ + ".jpg" + '</filename>\n')
        xml.write('\t<source>\n')
        xml.write('\t\t<database>WH Data</database>\n')
        xml.write('\t\t<annotation>WH</annotation>\n')
        xml.write('\t\t<image>flickr</image>\n')
        xml.write('\t\t<flickrid>NULL</flickrid>\n')
        xml.write('\t</source>\n')
        xml.write('\t<owner>\n')
        xml.write('\t\t<flickrid>NULL</flickrid>\n')
        xml.write('\t\t<name>WH</name>\n')
        xml.write('\t</owner>\n')
        xml.write('\t<size>\n')
        xml.write('\t\t<width>' + str(width) + '</width>\n')
        xml.write('\t\t<height>' + str(height) + '</height>\n')
        xml.write('\t\t<depth>' + str(channels) + '</depth>\n')
        xml.write('\t</size>\n')
        xml.write('\t\t<segmented>0</segmented>\n')
        for multi in json_file["shapes"]:
            points = np.array(multi["points"])
            labelName = multi["label"]
            xmin = min(points[:, 0])
            xmax = max(points[:, 0])
            ymin = min(points[:, 1])
            ymax = max(points[:, 1])
            label = multi["label"]
            if xmax <= xmin:
                pass
            elif ymax <= ymin:
                pass
            else:
                xml.write('\t<object>\n')
                xml.write('\t\t<name>' + labelName + '</name>\n')
                xml.write('\t\t<pose>Unspecified</pose>\n')
                xml.write('\t\t<truncated>1</truncated>\n')
                xml.write('\t\t<difficult>0</difficult>\n')
                xml.write('\t\t<bndbox>\n')
                xml.write('\t\t\t<xmin>' + str(int(xmin)) + '</xmin>\n')
                xml.write('\t\t\t<ymin>' + str(int(ymin)) + '</ymin>\n')
                xml.write('\t\t\t<xmax>' + str(int(xmax)) + '</xmax>\n')
                xml.write('\t\t\t<ymax>' + str(int(ymax)) + '</ymax>\n')
                xml.write('\t\t</bndbox>\n')
                xml.write('\t</object>\n')
                print(json_filename, xmin, ymin, xmax, ymax, label)
        xml.write('</annotation>')
# 5.复制图片到 VOC2007/JPEGImages/下
image_files = glob(labelme_imgpath + "*.jpg")
print("copy image files to VOC007/JPEGImages/")
for image in image_files:
    shutil.copy(image, saved_path + "JPEGImages/")
# 6.split files for txt
txtsavepath = saved_path + "ImageSets/Main/"
ftrainval = open(txtsavepath + '/trainval.txt', 'w')
ftest = open(txtsavepath + '/test.txt', 'w')
ftrain = open(txtsavepath + '/train.txt', 'w')
fval = open(txtsavepath + '/val.txt', 'w')
total_files = glob("D:/DATASET_for_CNN/labelme_data_new/VOC2007/Annotations/*.xml")
total_files = [i.replace("\", "/").split("/")[-1].split(".xml")[0] for i in total_files]
trainval_files = []
test_files = []
if isUseTest:
    trainval_files, test_files = train_test_split(total_files, test_size=0.15, random_state=55)
else:
    trainval_files = total_files
for file in trainval_files:
    ftrainval.write(file + "\n")
# split
train_files, val_files = train_test_split(trainval_files, test_size=0.15, random_state=55)
# train
for file in train_files:
    ftrain.write(file + "\n")
# val
for file in val_files:
    fval.write(file + "\n")
for file in test_files:
    print(file)
    ftest.write(file + "\n")
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

voc格局数据集去除不需要的label

我的数据集本来标示的label类共10类,但我在实际运用中只需要运用其间的4类来练习,因而需要把剩下不需要的类别的图片和标示通通删去掉。由于数据集已经转化成了voc格局,在删去的时分只需要遍历xml文件夹,解析xml文件,当里边出现了不需要的类别的obj的时分,就把这个xml连同对应的图片同时删去

我这么做是由于在我的数据会集,不需要的6类自身占比就十分少,因而关于那些混杂着需要方针和不需要方针的图片,我也同时删掉了,并不会对数据集自身的图片数量形成严重影响。

下面是我处理的代码voc_purification.py,值得注意的是,由于我的voc格局数据中ImageSets\Main\文件夹下有trainval.txt、train.txt、val.txt、test.txt四个文件,也就是四个划分,分别是练习验证集、练习集、验证集、测验集,所以在代码中我接连四次检查txt文件中是否有需要删去的行。

import glob
import xml.etree.ElementTree as ET
import os
# import xml.dom.minidom
# 类名 把要删去的类称号放进去
delete_labels = ['a', 'b', 'c', 'd', 'e', 'f']
# xml途径
path = r'your/annotation/path'    #寄存xml文件的文件夹
img_path = r'your/image/path'    #寄存图片的文件夹
for xml_file in glob.glob(path + '/*.xml'):
    # 获取文件名(不带后缀)
    filename = os.path.basename(xml_file)[:-4]
    # 返回解析树
    tree = ET.parse(xml_file)
    # 获取根节点
    root = tree.getroot()
    # 对一切方针进行解析
    for member in root.findall('object'):
        # 获取object标签内的name
        objectname = member.find('name').text
        if objectname in delete_labels:
            # print(objectname)
            os.remove(os.path.join(img_path, filename + '.jpg'))
            print('remove img:' + filename + '.jpg' + '\n')
            with open(r"your/trainval.txt/path", 'r') as file:
                lines = file.readlines()
            with open(r"your/trainval.txt/path", 'w') as file:
                for line in lines:
                    if line.strip("\n") != filename:
                        file.write(line)
            with open(r"your/train.txt/path", 'r') as file:
                lines = file.readlines()
            with open(r"your/train.txt/path", 'w') as file:
                for line in lines:
                    if line.strip("\n") != filename:
                        file.write(line)
            with open(r"your/val.txt/path", 'r') as file:
                lines = file.readlines()
            with open(r"your/val.txt/path", 'w') as file:
                for line in lines:
                    if line.strip("\n") != filename:
                        file.write(line)
            with open(r"your/test.txt/path", 'r') as file:
                lines = file.readlines()
            with open(r"your/test.txt/path", 'w') as file:
                for line in lines:
                    if line.strip("\n") != filename:
                        file.write(line)
            print('remove txt file:' + filename + '.jpg' + '\n')
            os.remove(os.path.join(path, filename + '.xml'))
            print('remove xml:' + filename + '.jpg' + '\n')
            break

voc转coco格局

之前之所以先转成voc格局,就是由于voc格局中一张图片对应一个xml文件的方法关于删掉不需要的图片比较便利,但在实际运用中,仍是coco格局用的比较多,因而我再把他转成coco格局。

这部分内容网上有很多教程能够参阅,我贴出来一个以供参阅。

voc2coco_from_txt

import shutil
import xml.etree.ElementTree as ET
import os
import json
coco = dict()
coco['images'] = []
coco['type'] = 'instances'
coco['annotations'] = []
coco['categories'] = []
category_set = dict()
image_set = set()
# 注意详细应用中,类别索引是从0开端,仍是从1开端。
# 若从1开端(包含背景的状况)下一句代码需改成category_item_id = 0
category_item_id = -1
image_id = 20180000000
annotation_id = 0
def addCatItem(name):
    global category_item_id
    category_item = dict()
    category_item['supercategory'] = 'none'
    category_item_id += 1
    category_item['id'] = category_item_id
    category_item['name'] = name
    coco['categories'].append(category_item)
    category_set[name] = category_item_id
    return category_item_id
def addImgItem(file_name, size):
    global image_id
    if file_name is None:
        raise Exception('Could not find filename tag in xml file.')
    if size['width'] is None:
        raise Exception('Could not find width tag in xml file.')
    if size['height'] is None:
        raise Exception('Could not find height tag in xml file.')
    image_id += 1
    image_item = dict()
    image_item['id'] = image_id
    image_item['file_name'] = file_name
    image_item['width'] = size['width']
    image_item['height'] = size['height']
    coco['images'].append(image_item)
    image_set.add(file_name)
    return image_id
def addAnnoItem(object_name, image_id, category_id, bbox):
    global annotation_id
    annotation_item = dict()
    annotation_item['segmentation'] = []
    seg = []
    # bbox[] is x,y,w,h
    # left_top
    seg.append(bbox[0])
    seg.append(bbox[1])
    # left_bottom
    seg.append(bbox[0])
    seg.append(bbox[1] + bbox[3])
    # right_bottom
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1] + bbox[3])
    # right_top
    seg.append(bbox[0] + bbox[2])
    seg.append(bbox[1])
    annotation_item['segmentation'].append(seg)
    annotation_item['area'] = bbox[2] * bbox[3]
    annotation_item['iscrowd'] = 0
    annotation_item['ignore'] = 0
    annotation_item['image_id'] = image_id
    annotation_item['bbox'] = bbox
    annotation_item['category_id'] = category_id
    annotation_id += 1
    annotation_item['id'] = annotation_id
    coco['annotations'].append(annotation_item)
def _read_image_ids(image_sets_file):
    ids = []
    with open(image_sets_file) as f:
        for line in f:
            ids.append(line.rstrip())
    return ids
"""经过txt文件生成"""
# split ='train' 'val' 'trainval' 'test'
def parseXmlFiles_by_txt(data_dir, json_save_path, split='train'):
    print("hello")
    labelfile = split + ".txt"
    image_sets_file = data_dir + "/ImageSets/Main/" + labelfile
    ids = _read_image_ids(image_sets_file)
    for _id in ids:
        image_file = data_dir + f"/JPEGImages/{_id}.jpg"
        shutil.copy(image_file, fr"E:\DataSets\labelme_new\COCO_cls_4\val{_id}.jpg")
        xml_file = data_dir + f"/Annotations/{_id}.xml"
        bndbox = dict()
        size = dict()
        current_image_id = None
        current_category_id = None
        file_name = None
        size['width'] = None
        size['height'] = None
        size['depth'] = None
        tree = ET.parse(xml_file)
        root = tree.getroot()
        if root.tag != 'annotation':
            raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))
        # elem is <folder>, <filename>, <size>, <object>
        for elem in root:
            current_parent = elem.tag
            current_sub = None
            object_name = None
            if elem.tag == 'folder':
                continue
            if elem.tag == 'filename':
                # 若xml文件名和文件里'filename'标签的内容不一致,而xml文件名是正确的,
                # 即,(标示错误),则用xml文件名赋给file_name,即,下面一句代码换成file_name = _id + '.jpg'
                file_name = elem.text
                if file_name in category_set:
                    raise Exception('file_name duplicated')
            # add img item only after parse <size> tag
            elif current_image_id is None and file_name is not None and size['width'] is not None:
                if file_name not in image_set:
                    current_image_id = addImgItem(file_name, size)
                    print('add image with {} and {}'.format(file_name, size))
                else:
                    raise Exception('duplicated image: {}'.format(file_name))
                    # subelem is <width>, <height>, <depth>, <name>, <bndbox>
            for subelem in elem:
                bndbox['xmin'] = None
                bndbox['xmax'] = None
                bndbox['ymin'] = None
                bndbox['ymax'] = None
                current_sub = subelem.tag
                if current_parent == 'object' and subelem.tag == 'name':
                    object_name = subelem.text
                    if object_name not in category_set:
                        current_category_id = addCatItem(object_name)
                    else:
                        current_category_id = category_set[object_name]
                elif current_parent == 'size':
                    if size[subelem.tag] is not None:
                        raise Exception('xml structure broken at size tag.')
                    size[subelem.tag] = int(subelem.text)
                # option is <xmin>, <ymin>, <xmax>, <ymax>, when subelem is <bndbox>
                for option in subelem:
                    if current_sub == 'bndbox':
                        if bndbox[option.tag] is not None:
                            raise Exception('xml structure corrupted at bndbox tag.')
                        bndbox[option.tag] = int(option.text)
                # only after parse the <object> tag
                if bndbox['xmin'] is not None:
                    if object_name is None:
                        raise Exception('xml structure broken at bndbox tag')
                    if current_image_id is None:
                        raise Exception('xml structure broken at bndbox tag')
                    if current_category_id is None:
                        raise Exception('xml structure broken at bndbox tag')
                    bbox = []
                    # x
                    bbox.append(bndbox['xmin'])
                    # y
                    bbox.append(bndbox['ymin'])
                    # w
                    bbox.append(bndbox['xmax'] - bndbox['xmin'])
                    # h
                    bbox.append(bndbox['ymax'] - bndbox['ymin'])
                    print('add annotation with {},{},{},{}'.format(object_name, current_image_id, current_category_id,
                                                                   bbox))
                    addAnnoItem(object_name, current_image_id, current_category_id, bbox)
    json.dump(coco, open(json_save_path, 'w'))
"""直接从xml文件夹中生成"""
def parseXmlFiles(xml_path, json_save_path):
    for f in os.listdir(xml_path):
        if not f.endswith('.xml'):
            continue
        bndbox = dict()
        size = dict()
        current_image_id = None
        current_category_id = None
        file_name = None
        size['width'] = None
        size['height'] = None
        size['depth'] = None
        xml_file = os.path.join(xml_path, f)
        print(xml_file)
        tree = ET.parse(xml_file)
        root = tree.getroot()
        if root.tag != 'annotation':
            raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))
        # elem is <folder>, <filename>, <size>, <object>
        for elem in root:
            current_parent = elem.tag
            current_sub = None
            object_name = None
            if elem.tag == 'folder':
                continue
            if elem.tag == 'filename':
                file_name = elem.text
                if file_name in category_set:
                    raise Exception('file_name duplicated')
            # add img item only after parse <size> tag
            elif current_image_id is None and file_name is not None and size['width'] is not None:
                if file_name not in image_set:
                    current_image_id = addImgItem(file_name, size)
                    print('add image with {} and {}'.format(file_name, size))
                else:
                    raise Exception('duplicated image: {}'.format(file_name))
                    # subelem is <width>, <height>, <depth>, <name>, <bndbox>
            for subelem in elem:
                bndbox['xmin'] = None
                bndbox['xmax'] = None
                bndbox['ymin'] = None
                bndbox['ymax'] = None
                current_sub = subelem.tag
                if current_parent == 'object' and subelem.tag == 'name':
                    object_name = subelem.text
                    if object_name not in category_set:
                        current_category_id = addCatItem(object_name)
                    else:
                        current_category_id = category_set[object_name]
                elif current_parent == 'size':
                    if size[subelem.tag] is not None:
                        raise Exception('xml structure broken at size tag.')
                    size[subelem.tag] = int(subelem.text)
                # option is <xmin>, <ymin>, <xmax>, <ymax>, when subelem is <bndbox>
                for option in subelem:
                    if current_sub == 'bndbox':
                        if bndbox[option.tag] is not None:
                            raise Exception('xml structure corrupted at bndbox tag.')
                        bndbox[option.tag] = int(option.text)
                # only after parse the <object> tag
                if bndbox['xmin'] is not None:
                    if object_name is None:
                        raise Exception('xml structure broken at bndbox tag')
                    if current_image_id is None:
                        raise Exception('xml structure broken at bndbox tag')
                    if current_category_id is None:
                        raise Exception('xml structure broken at bndbox tag')
                    bbox = []
                    # x
                    bbox.append(bndbox['xmin'])
                    # y
                    bbox.append(bndbox['ymin'])
                    # w
                    bbox.append(bndbox['xmax'] - bndbox['xmin'])
                    # h
                    bbox.append(bndbox['ymax'] - bndbox['ymin'])
                    print('add annotation with {},{},{},{}'.format(object_name, current_image_id, current_category_id,
                                                                   bbox))
                    addAnnoItem(object_name, current_image_id, current_category_id, bbox)
    json.dump(coco, open(json_save_path, 'w'))
if __name__ == '__main__':
    # 经过txt文件生成
    voc_data_dir = r"E:\DataSets\labelme_new\VOC2007"  # 整个数据集文件夹地点途径
    json_save_path = r"E:\DataSets\labelme_new\COCO_cls_4\annotations\val.json"  # 生成后的文件寄存途径和生成文件的名字
    parseXmlFiles_by_txt(voc_data_dir, json_save_path, "test")
    # 经过文件夹生成
    # ann_path = "E:/VOCdevkit/VOC2007/Annotations"
    # json_save_path = "E:/VOCdevkit/test.json"
    # parseXmlFiles(ann_path, json_save_path)

COCO格局数据集切图

由于我的数据集图片中方针都比较小,选用切图练习的方法进行(一般当原始数据集全部有标示框的图片中,有1/2以上的图片标示框的平均宽高与原图宽高比例小于0.04时,主张进行切图练习),本节代码来自PaddleDetection官方GitHub库房。

计算自己的数据集信息

先计算自己的数据集信息,看看是否需要切图练习

能够用下面代码box_distribution.py,运用进程在命令行输入

python box_distribution.py --json_path ../../dataset/annotations/train.json --out_img box_distribution.jpg

其间--json_path加载coco格局的json文件途径,--out_img输出计算分布图途径

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import matplotlib.pyplot as plt
import json
import numpy as np
import argparse
def median(data):
    data.sort()
    mid = len(data) // 2
    median = (data[mid] + data[~mid]) / 2
    return median
def draw_distribution(width, height, out_path):
    w_bins = int((max(width) - min(width)) // 10)
    h_bins = int((max(height) - min(height)) // 10)
    plt.figure()
    plt.subplot(221)
    plt.hist(width, bins=w_bins, color='green')
    plt.xlabel('Width rate *1000')
    plt.ylabel('number')
    plt.title('Distribution of Width')
    plt.subplot(222)
    plt.hist(height, bins=h_bins, color='blue')
    plt.xlabel('Height rate *1000')
    plt.title('Distribution of Height')
    plt.savefig(out_path)
    print(f'Distribution saved as {out_path}')
    plt.show()
def get_ratio_infos(jsonfile, out_img):
    allannjson = json.load(open(jsonfile, 'r'))
    be_im_id = 1
    be_im_w = []
    be_im_h = []
    ratio_w = []
    ratio_h = []
    images = allannjson['images']
    for i, ann in enumerate(allannjson['annotations']):
        if ann['iscrowd']:
            continue
        x0, y0, w, h = ann['bbox'][:]
        if be_im_id == ann['image_id']:
            be_im_w.append(w)
            be_im_h.append(h)
        else:
            im_w = images[be_im_id - 1]['width']
            im_h = images[be_im_id - 1]['height']
            im_m_w = np.mean(be_im_w)
            im_m_h = np.mean(be_im_h)
            dis_w = im_m_w / im_w
            dis_h = im_m_h / im_h
            ratio_w.append(dis_w)
            ratio_h.append(dis_h)
            be_im_id = ann['image_id']
            be_im_w = [w]
            be_im_h = [h]
    im_w = images[be_im_id - 1]['width']
    im_h = images[be_im_id - 1]['height']
    im_m_w = np.mean(be_im_w)
    im_m_h = np.mean(be_im_h)
    dis_w = im_m_w / im_w
    dis_h = im_m_h / im_h
    ratio_w.append(dis_w)
    ratio_h.append(dis_h)
    mid_w = median(ratio_w)
    mid_h = median(ratio_h)
    ratio_w = [i * 1000 for i in ratio_w]
    ratio_h = [i * 1000 for i in ratio_h]
    print(f'Median of ratio_w is {mid_w}')
    print(f'Median of ratio_h is {mid_h}')
    print('all_img with box: ', len(ratio_h))
    print('all_ann: ', len(allannjson['annotations']))
    draw_distribution(ratio_w, ratio_h, out_img)
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--json_path', type=str, default=None, help="Dataset json path.")
    parser.add_argument(
        '--out_img',
        type=str,
        default='box_distribution.jpg',
        help="Name of distibution img.")
    args = parser.parse_args()
    get_ratio_infos(args.json_path, args.out_img)
if __name__ == "__main__":
    main()

切图

假如计算成果中,有1/2以上的图片标示框的平均宽高与原图宽高比例小于0.04,如下输出信息,则考虑运用切图方法练习,能够比较有效地提高小方针的检测精度。

Median of ratio_w is 0.03799439775910364
Median of ratio_h is 0.04074914637387802
all_img with box:  1409
all_ann:  98905
Distribution saved as box_distribution.jpg

切图的代码同样来自PaddleDetection官方Github库房

slice_image.py

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from tqdm import tqdm
def slice_data(image_dir, dataset_json_path, output_dir, slice_size,
               overlap_ratio):
    try:
        from sahi.scripts.slice_coco import slice
    except Exception as e:
        raise RuntimeError(
            'Unable to use sahi to slice images, please install sahi, for example: `pip install sahi`, see https://github.com/obss/sahi'
        )
    tqdm.write(
        f" slicing for slice_size={slice_size}, overlap_ratio={overlap_ratio}")
    slice(
        image_dir=image_dir,
        dataset_json_path=dataset_json_path,
        output_dir=output_dir,
        slice_size=slice_size,
        overlap_ratio=overlap_ratio, )
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--image_dir', type=str, default=None, help="The image folder path.")
    parser.add_argument(
        '--json_path', type=str, default=None, help="Dataset json path.")
    parser.add_argument(
        '--output_dir', type=str, default=None, help="Output dir.")
    parser.add_argument(
        '--slice_size', type=int, default=500, help="slice_size")
    parser.add_argument(
        '--overlap_ratio', type=float, default=0.25, help="overlap_ratio")
    args = parser.parse_args()
    slice_data(args.image_dir, args.json_path, args.output_dir, args.slice_size,
               args.overlap_ratio)
if __name__ == "__main__":
    main()

删去无方针的背景图

切图之后的数据集,文件夹里边存在大量的无方针标示框的图片,即原图中的背景部分。假如直接丢进去练习有或许形成正负样本不均衡的问题,从而影响精度。因而要把这部分图片删去掉。由于数据集是coco格局的,所以删的时分既要删掉图片,也要把json文件中对应的信息删去掉,详细实现参阅下面代码。

coco_del_bg.py

import json
import os
class CocoDataDeleteBackground:
    def __init__(self, imgPath, jsonPath):
        self.imgPath = imgPath
        self.jsonPath = jsonPath
    def delete_background(self):
        with open(self.jsonPath, 'r+') as f:
            annotation_json = json.load(f)
            # 查询一切那些有标示框的图片id
            all_img_id = []
            for anno in annotation_json['annotations']:
                img_id = anno['image_id']  # 获取当时方针地点的图片id
                all_img_id.append(img_id)
            all_img_id = list(set(all_img_id))  # id去重
            all_imgs_to_del = []
            # 遍历images对应的list,删掉其间id不在all_img_id中的项,以及对应的图片
            for i in range(len(annotation_json['images'][::])):
                image_name = annotation_json['images'][i]['file_name']  # 读取图片名
                img_id = annotation_json['images'][i]['id']  # 读取图片id
                if img_id not in all_img_id:
                    all_imgs_to_del.append(i)
                    os.remove(os.path.join(self.imgPath, image_name))
                    print(image_name + 'has been removed!')
            all_imgs_to_del = sorted(all_imgs_to_del, reverse=True)
            for i in all_imgs_to_del:
                del annotation_json['images'][i]
            f.seek(0)
            f.truncate()  # json清空
            f.write(json.dumps(annotation_json))  # json重写
if __name__ == '__main__':
    # the first param is the directory's path of images
    # the second param is the path of json file
    d = CocoDataDeleteBackground(r"your\image\path",
                                 r"your\json\path")
    # run the delete function
    d.delete_background()
    print('done!')