0x1 前言
在iOS中,运用nil指针调用OC的办法是安全的,但是运用nil指针调用block却会产生溃散。本篇文章,将会从汇编的视点解说该现象。
0x2 block的结构
Block 的结构能够在 Runtime 的开源代码Objc4-706 中找到,它坐落 Block-private.h 中:
struct Block_layout {
void *isa;
volatile int32_t flags; // contains ref count
int32_t reserved;
void (*invoke)(void *, ...);
struct Block_descriptor_1 *descriptor;
// imported variables
};
在arm64中,一个指针占8字节,int32_t占4个字节,所以一个block的内存根本布局如下图:
0x3 测验代码
1.首先定义Helper类辅助测验,代码如下:
@interface Helper : NSObject
@property (nonatomic, copy) dispatch_block_t block;
@end
@implementation Helper
- (void)triger {}
@end
2.测验用例1:调用一个正常目标的block
- (void)testBlock {
Helper *helper = [Helper new];
helper.block = ^{
NSLog(@"test");
};
helper.block();
}
在testBlock函数入口处打上断点
然后在Xcode菜单栏找到Debug
-> Debug Workflow
,勾选Always Show Disassembly
运行代码,触发断点,会主动进入Xcode汇编,如图所示。
3.剖析汇编
TestBlock`-[ViewController testBlock]:
0x1001a5d1c <+0>: sub sp, sp, #0x40
0x1001a5d20 <+4>: stp x29, x30, [sp, #0x30]
0x1001a5d24 <+8>: add x29, sp, #0x30
0x1001a5d28 <+12>: stur x0, [x29, #-0x8]
0x1001a5d2c <+16>: stur x1, [x29, #-0x10]
0x1001a5d30 <+20>: adrp x8, 8
-> 0x1001a5d34 <+24>: ldr x0, [x8, #0x428]
0x1001a5d38 <+28>: bl 0x1001a634c ; symbol stub for: objc_opt_new
0x1001a5d3c <+32>: ldr x1, [sp]
0x1001a5d40 <+36>: add x8, sp, #0x18
0x1001a5d44 <+40>: str x8, [sp, #0x10]
0x1001a5d48 <+44>: str x0, [sp, #0x18]
0x1001a5d4c <+48>: ldr x0, [sp, #0x18]
0x1001a5d50 <+52>: adrp x2, 3
0x1001a5d54 <+56>: add x2, x2, #0x50 ; __block_literal_global.13
0x1001a5d58 <+60>: bl 0x1001a64c0 ; objc_msgSend$setBlock:
0x1001a5d5c <+64>: ldr x1, [sp]
0x1001a5d60 <+68>: ldr x0, [sp, #0x18]
0x1001a5d64 <+72>: bl 0x1001a6460 ; objc_msgSend$block
0x1001a5d68 <+76>: mov x29, x29
0x1001a5d6c <+80>: bl 0x1001a6364 ; symbol stub for: objc_retainAutoreleasedReturnValue
0x1001a5d70 <+84>: str x0, [sp, #0x8]
0x1001a5d74 <+88>: ldr x8, [x0, #0x10]
0x1001a5d78 <+92>: blr x8
0x1001a5d7c <+96>: ldr x0, [sp, #0x8]
0x1001a5d80 <+100>: bl 0x1001a6358 ; symbol stub for: objc_release
0x1001a5d84 <+104>: ldr x0, [sp, #0x10]
0x1001a5d88 <+108>: mov x1, #0x0
0x1001a5d8c <+112>: bl 0x1001a6388 ; symbol stub for: objc_storeStrong
0x1001a5d90 <+116>: ldp x29, x30, [sp, #0x30]
0x1001a5d94 <+120>: add sp, sp, #0x40
0x1001a5d98 <+124>: ret
打个断点在0x1001a5d64 <+72>: bl 0x1001a6460 ; objc_msgSend$block
指令处,此时x0为helper目标,bl指令调用的是helper目标的block属性的get办法,即[helper block]
函数。
-> 0x1001a5d64 <+72>: bl 0x1001a6460 ; objc_msgSend$block
0x1001a5d68 <+76>: mov x29, x29
0x1001a5d6c <+80>: bl 0x1001a6364 ; symbol stub for: objc_retainAutoreleasedReturnValue
0x1001a5d70 <+84>: str x0, [sp, #0x8]
0x1001a5d74 <+88>: ldr x8, [x0, #0x10]
0x1001a5d78 <+92>: blr x8
(lldb) register read x0
x0 = 0x0000000282b80a60
(lldb) po 0x0000000282b80a60
<Helper: 0x282b80a60>
单步断点下一个指令,断点到 0x1001a5d68 <+76>: mov x29, x29
处,此时履行完[helper block]
函数,返回了block的指针,放于寄存器x0中,能够简略的理解为x0 = [helper block]。
0x1001a5d64 <+72>: bl 0x1001a6460 ; objc_msgSend$block
-> 0x1001a5d68 <+76>: mov x29, x29
0x1001a5d6c <+80>: bl 0x1001a6364 ; symbol stub for: objc_retainAutoreleasedReturnValue
0x1001a5d70 <+84>: str x0, [sp, #0x8]
0x1001a5d74 <+88>: ldr x8, [x0, #0x10]
0x1001a5d78 <+92>: blr x8
(lldb) register read x0
x0 = 0x00000001001a8050 TestBlock`__block_literal_global.13
断点打在0x1001a5d70 <+84>: str x0, [sp, #0x8]
指令处,履行完objc_retainAutoreleasedReturnValue
函数后,x0仍然是block指针。
0x1001a5d64 <+72>: bl 0x1001a6460 ; objc_msgSend$block
0x1001a5d68 <+76>: mov x29, x29
0x1001a5d6c <+80>: bl 0x1001a6364 ; symbol stub for: objc_retainAutoreleasedReturnValue
-> 0x1001a5d70 <+84>: str x0, [sp, #0x8]
0x1001a5d74 <+88>: ldr x8, [x0, #0x10]
0x1001a5d78 <+92>: blr x8
(lldb) register read x0
x0 = 0x00000001001a8050 TestBlock`__block_literal_global.13
断点打在0x1001a5d78 <+92>: blr x8
指令处,0x1001a5d74 <+88>: ldr x8, [x0, #0x10]
这句指令的伪代码:x8 = x0 + 0x10, 即 0x00000001001a8060 = 0x00000001001a8050 + 0x10,在地址0x00000001001a8060处内存寄存的地址便是block目标的invoke指针0x00000001001a5d9c。
0x1001a5d64 <+72>: bl 0x1001a6460 ; objc_msgSend$block
0x1001a5d68 <+76>: mov x29, x29
0x1001a5d6c <+80>: bl 0x1001a6364 ; symbol stub for: objc_retainAutoreleasedReturnValue
0x1001a5d70 <+84>: str x0, [sp, #0x8]
0x1001a5d74 <+88>: ldr x8, [x0, #0x10]
-> 0x1001a5d78 <+92>: blr x8
(lldb) register read x0
x0 = 0x00000001001a8050 TestBlock`__block_literal_global.13
(lldb) memory read 0x00000001001a8060
0x1001a8060: 9c 5d 1a 00 01 00 00 00 10 80 1a 00 01 00 00 00 .]..............
0x1001a8070: b8 2f 97 f6 01 00 00 00 c8 07 00 00 00 00 00 00 ./..............
(lldb) register read x8
x8 = 0x00000001001a5d9c TestBlock`__27-[ViewController testBlock]_block_invoke at ViewController.m:71
根据block的内存布局图能够知道在block的isa + 0x10处的内存便是block的invoke指针地址。指令0x1001a5d78 <+92>: blr x8
是调用block的invoke指针进行函数调用,即调用的是[helper block]()
,履行block的调用。这是一个正常oc目标的block的调用汇编剖析,现在来看一下下面两种测验用例。
4.测验用例2:调用一个目标的nil block,重复2进程,进入Xcode汇编
- (void)testBlockNilBlock {
Helper *helper = [Helper new];
helper.block();
}
将断点打到0x100d09c14 <+52>: bl 0x100d0a460 ; objc_msgSend$block
指令处,获取block指针的指令调用之后。查看此时的x0,发现获取的值为0,也便是nil,取到一个为nil的block指针。
TestBlock`-[ViewController testBlockNilBlock]:
0x100d09be0 <+0>: sub sp, sp, #0x40
0x100d09be4 <+4>: stp x29, x30, [sp, #0x30]
0x100d09be8 <+8>: add x29, sp, #0x30
0x100d09bec <+12>: stur x0, [x29, #-0x8]
0x100d09bf0 <+16>: stur x1, [x29, #-0x10]
0x100d09bf4 <+20>: adrp x8, 8
0x100d09bf8 <+24>: ldr x0, [x8, #0x428]
0x100d09bfc <+28>: bl 0x100d0a34c ; symbol stub for: objc_opt_new
0x100d09c00 <+32>: ldr x1, [sp]
0x100d09c04 <+36>: add x8, sp, #0x18
0x100d09c08 <+40>: str x8, [sp, #0x10]
0x100d09c0c <+44>: str x0, [sp, #0x18]
0x100d09c10 <+48>: ldr x0, [sp, #0x18]
0x100d09c14 <+52>: bl 0x100d0a460 ; objc_msgSend$block
-> 0x100d09c18 <+56>: mov x29, x29
0x100d09c1c <+60>: bl 0x100d0a364 ; symbol stub for: objc_retainAutoreleasedReturnValue
0x100d09c20 <+64>: str x0, [sp, #0x8]
0x100d09c24 <+68>: ldr x8, [x0, #0x10]
0x100d09c28 <+72>: blr x8
0x100d09c2c <+76>: ldr x0, [sp, #0x8]
0x100d09c30 <+80>: bl 0x100d0a358 ; symbol stub for: objc_release
0x100d09c34 <+84>: ldr x0, [sp, #0x10]
0x100d09c38 <+88>: mov x1, #0x0
0x100d09c3c <+92>: bl 0x100d0a388 ; symbol stub for: objc_storeStrong
0x100d09c40 <+96>: ldp x29, x30, [sp, #0x30]
0x100d09c44 <+100>: add sp, sp, #0x40
0x100d09c48 <+104>: ret
(lldb) register read x0
x0 = 0x0000000000000000
将断点打在0x100d09c24 <+68>: ldr x8, [x0, #0x10]
指令处,该指令等价于x8 = x0 + 0x10,由于此时x0为0x0000000000000000,所以 0x0000000000000010 = 0x0000000000000000 + 0x10,该地址0x0000000000000010为不合法地址,所以会触发不合法地址反常。
0x100d09c14 <+52>: bl 0x100d0a460 ; objc_msgSend$block
0x100d09c18 <+56>: mov x29, x29
0x100d09c1c <+60>: bl 0x100d0a364 ; symbol stub for: objc_retainAutoreleasedReturnValue
0x100d09c20 <+64>: str x0, [sp, #0x8]
-> 0x100d09c24 <+68>: ldr x8, [x0, #0x10]
0x100d09c28 <+72>: blr x8
铺开断点,继续履行,触发EXC_BAD_ACCESS
反常,反常信息中address=0x10,如下图:
从这个用例中能够得出结论,当目标的block为nil时,在汇编层,仍然会按照正常的block调用逻辑去取block的invoke指针去履行,当寄存器进行计算获取invoke指针时,由于block为nil,寄存器计算出的地址为0x10,触发不合法地址反常。
5.测验用例3:调用一个nil目标的block,重复2进程,进入Xcode汇编
- (void)testBlockNilObj {
Helper *helper = nil;
helper.block();
}
TestBlock`-[ViewController testBlockNilObj]:
0x1025a5b78 <+0>: sub sp, sp, #0x40
0x1025a5b7c <+4>: stp x29, x30, [sp, #0x30]
0x1025a5b80 <+8>: add x29, sp, #0x30
0x1025a5b84 <+12>: mov x8, x1
0x1025a5b88 <+16>: stur x0, [x29, #-0x8]
0x1025a5b8c <+20>: stur x8, [x29, #-0x10]
0x1025a5b90 <+24>: add x8, sp, #0x18
0x1025a5b94 <+28>: str x8, [sp, #0x8]
0x1025a5b98 <+32>: mov x8, #0x0
0x1025a5b9c <+36>: str x8, [sp, #0x10]
-> 0x1025a5ba0 <+40>: str xzr, [sp, #0x18]
0x1025a5ba4 <+44>: ldr x0, [sp, #0x18]
0x1025a5ba8 <+48>: bl 0x1025a6460 ; objc_msgSend$block
0x1025a5bac <+52>: mov x29, x29
0x1025a5bb0 <+56>: bl 0x1025a6364 ; symbol stub for: objc_retainAutoreleasedReturnValue
0x1025a5bb4 <+60>: str x0, [sp]
0x1025a5bb8 <+64>: ldr x8, [x0, #0x10]
0x1025a5bbc <+68>: blr x8
0x1025a5bc0 <+72>: ldr x0, [sp]
0x1025a5bc4 <+76>: bl 0x1025a6358 ; symbol stub for: objc_release
0x1025a5bc8 <+80>: ldr x0, [sp, #0x8]
0x1025a5bcc <+84>: ldr x1, [sp, #0x10]
0x1025a5bd0 <+88>: bl 0x1025a6388 ; symbol stub for: objc_storeStrong
0x1025a5bd4 <+92>: ldp x29, x30, [sp, #0x30]
0x1025a5bd8 <+96>: add sp, sp, #0x40
0x1025a5bdc <+100>: ret
对比其获取block指针到取invoke指针去履行这一进程,与测验用例2并无差异:
0x1025a5ba8 <+48>: bl 0x1025a6460 ; objc_msgSend$block
0x1025a5bac <+52>: mov x29, x29
0x1025a5bb0 <+56>: bl 0x1025a6364 ; symbol stub for: objc_retainAutoreleasedReturnValue
0x1025a5bb4 <+60>: str x0, [sp]
0x1025a5bb8 <+64>: ldr x8, [x0, #0x10]
0x1025a5bbc <+68>: blr x8
所以,不管是调用nil目标的block仍是正常目标的一个为nil的block指针终究都会触发到不合法地址反常上。
6.测验用例4: 调用一个nil目标的函数,重复2进程,进入Xcode汇编
- (void)test {
Helper *helper = nil;
[helper triger];
}
TestBlock`-[ViewController test]:
0x102635c4c <+0>: sub sp, sp, #0x40
0x102635c50 <+4>: stp x29, x30, [sp, #0x30]
0x102635c54 <+8>: add x29, sp, #0x30
0x102635c58 <+12>: mov x8, x1
0x102635c5c <+16>: stur x0, [x29, #-0x8]
0x102635c60 <+20>: stur x8, [x29, #-0x10]
0x102635c64 <+24>: add x8, sp, #0x18
0x102635c68 <+28>: str x8, [sp, #0x8]
0x102635c6c <+32>: mov x8, #0x0
0x102635c70 <+36>: str x8, [sp, #0x10]
-> 0x102635c74 <+40>: str xzr, [sp, #0x18]
0x102635c78 <+44>: ldr x0, [sp, #0x18]
0x102635c7c <+48>: bl 0x102636500 ; objc_msgSend$triger
0x102635c80 <+52>: ldr x0, [sp, #0x8]
0x102635c84 <+56>: ldr x1, [sp, #0x10]
0x102635c88 <+60>: bl 0x102636388 ; symbol stub for: objc_storeStrong
0x102635c8c <+64>: ldp x29, x30, [sp, #0x30]
0x102635c90 <+68>: add sp, sp, #0x40
0x102635c94 <+72>: ret
关于OC函数调用终究都会转换成objc_msgSend的调用
0x102635c7c <+48>: bl 0x102636500 ; objc_msgSend$triger
查看objc_msgSend
的实现可知,指令cbz r0, LNilReceiver_f
先判别x0是否为nil,如果为nil,清空寄存器,音讯发送返回nil。所以关于nil目标的办法调用,是安全的。并不会像block调用相同对寄存器中的内容(即使内存为0,没有作判空)进行偏移计算获取invoke指针进行调用,从而导致取到不合法地址,触发反常。
0x4 总结
本篇文章经过剖析以上几个测验用例的汇编代码,剖析了OC目标函数与block调用在汇编层面上的差异,这种差异导致了关于block的调用需求进行判空后才干确保安全。
!block ?: block();
值得注意的是,调用多层目标的block时,也需求进行判空,即使d目标与其block必定存在,也可能由于a、b、c目标中任意一个为nil,导致呈现测验用例3的场景,调用一个nil目标的block产生溃散,比方:
//不安全调用
a.b.c.d.block();
//安全调用
!a.b.c.d.block ?: a.b.c.d.block();
关于这种状况,能够对将该block进行一层函数封装,能够防止过长的判别逻辑。
//d类
- (void)callBlock {
!self.block ?: self.block();
}
//调用
[a.b.c.d callBlock];
总而言之,block调用之前需求进行判空。