本文已收录到 AndroidFamily,技术和职场问题,请重视公众号 [彭旭锐] 发问。
大家好,我是小彭。
前天刚举行 2023 年力扣杯个人 SOLO 赛,昨天周赛就出了一场 Easy – Easy – Medium – Medium 的水场,不得不说 LeetCode 是懂礼数的 。
接下来,请你跟着小彭的思路,一步步将问题做难,再将问题做简略。
往期回顾:LeetCode 单周赛 341 难度上来了,图论的问题很多啊!
LeetCode 周赛 342 概览
Q1. 核算列车到站时刻(Easy)
简略模仿题,不多解说。
Q2. 倍数求和(Easy)
题解 1:暴力解法 O(n)O(n) 时刻复杂度
题解 2:剖析数据特征后发现数据存在等差数列性质,咱们运用容斥原理和等差数列求和公式,能够把优化到 O(1)O(1) 时刻复杂度
Q3. 滑动子数组的美丽值(Medium)
题解 1:在滑动窗口的基础上,结合快速挑选查找滑动窗口中第 x 小的元素,时刻复杂度是 O(n⋅k)O(nk)
题解 2:剖析数据特征后发现标题的值域十分小,咱们能够用计数排序替代快速挑选,时刻复杂度为 O(n⋅U)O(nU)
Q4. 使数组一切元素变成 1 的最少操作次数(Medium)
在问题剖析后咱们将原问题笼统为 “寻觅 GCB 为 1 的最短子数组”,关联相似的 “和为 k 的最短子数组” 问题,咱们有从暴力 → 有序调集 → 单调性优化的解法:
题解 1:暴力 O(n⋅(n+logU))O(n(n + logU)) 时刻复杂度
题解 2:有序调集 O(n⋅lgU⋅lg(lgU))O(nlgUlg(lgU)) 时刻复杂度
题解 3:单调性优化 O(n⋅lgU)O(nlgU) 时刻复杂度
Q1. 核算列车到站时刻(Easy)
标题地址
leetcode.cn/problems/ca…
标题描绘
给你一个正整数arrivalTime
表明列车正点到站的时刻(单位:小时),另给你一个正整数delayedTime
表明列车延误的小时数。
回来列车实践到站的时刻。
留意,该问题中的时刻采用 24 小时制。
示例 1:
输入:arrivalTime = 15, delayedTime = 5
输出:20
解说:列车正点到站时刻是 15:00 ,延误 5 小时,所以列车实践到站的时刻是 15 + 5 = 20(20:00)。
示例 2:
输入:arrivalTime = 13, delayedTime = 11
输出:0
解说:列车正点到站时刻是 13:00 ,延误 11 小时,所以列车实践到站的时刻是 13 + 11 = 24(在 24 小时制中表明为 00:00 ,所以回来 0)。
提示:
1 <= arrivaltime <24
1 <= delayedTime <= 24
题解(模仿)
简略模仿题,按题意完成即可。
class Solution {
fun findDelayedArrivalTime(arrivalTime: Int, delayedTime: Int): Int {
return (arrivalTime + delayedTime) % 24
}
}
复杂度剖析:
- 时刻复杂度:O(1)O(1)
- 空间复杂度:O(1)O(1)
Q2. 倍数求和(Easy)
标题地址
leetcode.cn/problems/su…
标题描绘
给你一个正整数n
,请你核算在[1,n]
规模内能被3
、5
、7
整除的一切整数之和。
回来一个整数,用于表明给定规模内一切满意约束条件的数字之和。
示例 1:
输入:n = 7
输出:21
解说:在[1, 7] 规模内能被 3、5、7 整除的一切整数分别是 3、5、6、7 。数字之和为21 。
示例 2:
输入:n = 10
输出:40
解说:在[1, 10] 规模内能被 3、5、7 整除的一切整数分别是 3、5、6、7、9、10 。数字之和为40 。
示例 3:
输入:n = 9
输出:30
解说:在[1, 9] 规模内能被 3、5、7 整除的一切整数分别是 3、5、6、7、9 。数字之和为30 。
提示:
1 <= n <= 103
准备常识 – 容斥原理
界说调集 A 表明能够被 3 整除的数,界说调集 B 表明能够被 5 整除的数,界说调集 C 表明能够被 7 整除的数。假如把这 3 个调集直接加起来,会多出来一些元素重复统计了,因而需求扣除 A ∩ B,A ∩ C 和 B ∩ C ,可是又有一小部分元素多扣了,反而再需求加上 A ∩ B ∩ C。这便是 容斥原理:
其间:
- A ∪ B ∪ C 表明能够被 3 或 5 或 7 整除的数,也便是原问题的解;
- A ∩ B 表明能够一起被 3 和 5 整除的数;
- A ∩ C 表明能够一起被 3 和 7 整除的数;
- B ∩ C 表明能够一起被 5 和 7 整除的数。
准备常识 – 等差数列求和
- 等差数列求和公式:(首项 + 尾项) * 项数 / 2
题解一(暴力)
先考虑暴力解法:
算法:枚举每个数,查看该数字是否为 3 / 5 / 7 的倍数,是则计入成果中。
class Solution {
fun sumOfMultiples(n: Int): Int {
var ret = 0
for (i in 1 .. n) {
if(i % 3 == 0 || i % 5 == 0 || i % 7 == 0) ret += i
}
return ret
}
}
复杂度剖析:
- 时刻复杂度:O(n)O(n) 其间 n 为 nums 数组的长度,每个元素最多拜访 1 次;
- 空间复杂度:O(1)O(1)
题解二(容斥原理 + 等差数列求和公式)
暴力解法是否有优化空间呢,先剖析重复核算:
- 要点 1:能够观察到 [1, n] 规模中的方针数是存在关联的,以 3 的倍数为例,3、6、9、12 是以 3 为等差的等差数列,而等差数列的和能够运用公式核算。数字 m 在 [1, n] 规模内里的倍数为 n / m 个,能够运用等差数列求和公式以 O(1) 算出这部分元素之和;
- 要点 2:结合容斥原理,能够在 O(1) 时刻复杂度求出原问题。那么能够一起被 3 和 5 整除的等差数列怎么核算呢?其实便是核算 15 的倍数。同理能够一起被 3 和 5 和 7 整除的等差数列便是 105 的倍数。
至此,结合容斥原理模仿即可:
class Solution {
fun sumOfMultiples(n: Int): Int {
return sum(n, 3) + sum(n, 5) + sum(n, 7) - sum(n, 15) - sum(n, 21) - sum(n, 35) + sum(n, 105)
}
private fun sum(n:Int, k:Int) :Int {
// 等差数列求和公式:(首项 + 尾项) * 项数 / 2
return (k + (n / k * k)) * (n / k) / 2
}
}
复杂度剖析:
- 时刻复杂度:O(1)O(1)
- 空间复杂度:O(1)O(1)
Q3. 滑动子数组的美丽值(Medium)
标题地址
leetcode.cn/problems/sl…
标题描绘
给你一个长度为n
的整数数组nums
,请你求出每个长度为k
的子数组的美丽值。
一个子数组的美丽值界说为:假如子数组中第x
小整数是负数,那么美丽值为第x
小的数,否则美丽值为0
。
请你回来一个包含**n - k + 1
个整数的数组,顺次表明数组中从榜首个下标开端,每个长度为k
的子数组的美丽值。
- 子数组指的是数组中一段接连非空的元素序列。
示例 1:
输入:nums = [1,-1,-3,-2,3], k = 3, x = 2
输出:[-1,-2,-2]
解说:总共有 3 个 k = 3 的子数组。
榜首个子数组是[1, -1, -3] ,第二小的数是负数 -1 。
第二个子数组是[-1, -3, -2] ,第二小的数是负数 -2 。
第三个子数组是[-3, -2, 3],第二小的数是负数 -2 。
示例 2:
输入:nums = [-1,-2,-3,-4,-5], k = 2, x = 2
输出:[-1,-2,-3,-4]
解说:总共有 4 个 k = 2 的子数组。
[-1, -2] 中第二小的数是负数 -1 。[-2, -3] 中第二小的数是负数 -2 。[-3, -4] 中第二小的数是负数 -3 。[-4, -5] 中第二小的数是负数 -4 。
示例 3:
输入:nums = [-3,1,2,-3,0,-3], k = 2, x = 1
输出:[-3,0,-3,-3,-3]
解说:总共有 5 个 k = 2 的子数组。
[-3, 1] 中最小的数是负数 -3 。[1, 2] 中最小的数不是负数,所以美丽值为 0 。[2, -3] 中最小的数是负数 -3 。[-3, 0] 中最小的数是负数 -3 。[0, -3] 中最小的数是负数 -3 。
提示:
n == nums.length
1 <= n <= 105
1 <= k <= n
1 <= x <= k
50<= nums[i] <= 50
准备常识
求出每个长度为k
的子数组的美丽值,简单想到能够用滑动窗口。
伪代码为:
// 伪代码
for (i in 0 until n) {
// 进入窗口
list.add(i)
// 脱离窗口
if (i >= k) list.remove(i - k)
if (i >= k - 1) {
// 核算窗口答案
}
}
题解一(滑动窗口 + 快速挑选 超出时刻约束)
在滑动窗口的基础上,运用快速挑选查找窗口中第 x 小的数:
class Solution {
private val random = Random(0)
fun getSubarrayBeauty(nums: IntArray, k: Int, x: Int): IntArray {
val n = nums.size
val ret = LinkedList<Int>()
val list = ArrayList<Int>()
for (i in 0 until n) {
// 进入窗口
list.add(i)
// 脱离窗口
if (i >= k) list.remove(i - k)
if (i >= k - 1) {
// 核算窗口答案
quickSelect(nums, list, x)
val num = nums[list[x - 1]]
ret.add(if (num < 0) num else 0)
}
}
return ret.toIntArray()
}
private fun quickSelect(nums: IntArray, list: ArrayList<Int>, x: Int) {
val target = x - 1
var left = 0
var right = list.size - 1
while (left < right) {
val pivot = partition(nums, list, left, right)
if (pivot == target) {
return
} else if (pivot < target) {
left = pivot + 1
} else {
right = pivot - 1
}
}
}
private fun partition(nums: IntArray, list: ArrayList<Int>, left: Int, right: Int): Int {
val random = random.nextInt(right - left + 1) + left
list.swap(random, right)
var p = left
for (i in left until right) {
if (nums[list[i]] < nums[list[right]]) list.swap(i, p++)
}
list.swap(p, right)
return p
}
private fun ArrayList<Int>.swap(i: Int, j: Int) {
val temp = this[i]
this[i] = this[j]
this[j] = temp
}
}
复杂度剖析:
- 时刻复杂度:O(n⋅k)O(nk) 其间 n 是 nums 数组的长度,单次窗口快速挑选的时刻复杂度是 O(k)O(k);
- 空间复杂度:O(k)O(k) 滑动窗口空间。
题解二(滑动窗口 + 计数排序)
留意到标题的值域十分小,能否运用起来:
咱们能够用计数排序替代快速挑选,用 cnts 计数数组核算窗口内每个元素的出现次数,再根据计数数组核算出第 x 小的数:
class Solution {
private val random = Random(0)
fun getSubarrayBeauty(nums: IntArray, k: Int, x: Int): IntArray {
val n = nums.size
val OFFSET = 50
val cnts = IntArray(OFFSET * 2 + 1)
val ret = IntArray(n - k + 1)
outer@ for (i in 0 until n) {
// 进入窗口
cnts[OFFSET + nums[i]]++
// 脱离窗口
if (i >= k) cnts[OFFSET + nums[i - k]]--
if (i >= k - 1) {
// 核算窗口美丽值
var count = x
// for (num in -OFFSET .. -1) {
for (num in -OFFSET .. OFFSET) {
count -= cnts[num + 50]
if (count <= 0) {
// 找到第 x 小的数
// ret[i - k + 1] = num
ret[i - k + 1] = if(num < 0) num else 0
continue@outer
}
}
}
}
return ret
}
}
别的,由于标题要求美丽值是负数,所以在核算窗口美丽值时,咱们只需求枚举 [-50, -1] 的元素值。
复杂度剖析:
- 时刻复杂度:O(n⋅U)O(nU) 其间 n 是 nums 数组的长度,U 是值域巨细 101。每次滑动窗口求第 x 小的元素时刻是 O(U)O(U);
- 空间复杂度:O(U)O(U) 计数数组空间。
Q4. 使数组一切元素变成 1 的最少操作次数(Medium)
标题地址
leetcode.cn/problems/mi…
标题描绘
给你一个下标从0开端的正整数数组nums
。你能够对数组履行以下操作任意次:
- 挑选一个满意
0 <= i < n - 1
的下标i
,将nums[i]
或许nums[i+1]
两者之一替换成它们的最大公约数。
请你回来使数组nums
中一切元素都等于1
的最少操作次数。假如无法让数组全部变成1
,请你回来-1
。
两个正整数的最大公约数指的是能整除这两个数的最大正整数。
示例 1:
输入:nums = [2,6,3,4]
输出:4
解说:咱们能够履行以下操作:
- 挑选下标 i = 2 ,将 nums[2] 替换为 gcd(3,4) = 1 ,得到 nums = [2,6,1,4] 。
- 挑选下标 i = 1 ,将 nums[1] 替换为 gcd(6,1) = 1 ,得到 nums = [2,1,1,4] 。
- 挑选下标 i = 0 ,将 nums[0] 替换为 gcd(2,1) = 1 ,得到 nums = [1,1,1,4] 。
- 挑选下标 i = 2 ,将 nums[3] 替换为 gcd(1,4) = 1 ,得到 nums = [1,1,1,1] 。
示例 2:
输入:nums = [2,10,6,14]
输出:-1
解说:无法将一切元素都变成 1 。
提示:
2 <= nums.length <= 50
1 <= nums[i] <= 106
问题剖析
剖析方针成果:
使得数组中一切元素都变成 1 的最少操作次数。
剖析标题示例:
- 由于在每次操作中最多只能将一个数字修正为最大公约数,那么将 1 个元素操作为 “1” 的最小操作次数(假如可行)不会低于 1 次,将 n 个大于 1 的元素操作为 “1” 的最小次数不会低于 n 次,例如样例 [2,6,1,4]。
- 假如数组中至少存在 1 个 “1” 时,咱们只需求将每个 “1” 与相邻的 “非 1” 元素组合操作,就能将一切元素,例如样例 [2,6,1,4]。这说明,问题的最小操作次数正好便是数组中不是 “1” 的个数。
- 假如数组中不存在 “1”,需求先操作出原始的 “1”:
- 假如数组中一切元素的最大公约数大于 1,那么无论怎么也无法操作出数字 1,例如样例 [2, 10, 6, 14];
- 否则,咱们总能够操作 x 次取得原始 “1”,那么问题就等于 count + n – 1;
至此,程序全体结构确认。伪代码为:
if (一切元素的最大公约数 > 1) return -1
if (1 的个数 > 0) return n - (1 的个数)
操作 count 次得到原始的 “1”
return count + n - 1
接下来,咱们需求考虑怎么核算出操作出原始 “1” 的最小次数:
回归到原问题操作,咱们在每次操作中能够将一个数修正为最大公约数,那么对于接连的一段子数组(长度为 subSize),咱们总能够用 subSize – 1 次操作将其间一个数变为整个子数组的最大公约数。假如这个最大公约数是 1,那么操作次数正好是 subSize – 1,反之无法操作出 1。
至此,能够想出暴力解法:
题解一(暴力枚举子数组)
在暴力解法中,咱们枚举一切子数组,记载出一切子数组操作出原始 “1” 的最少操作次数。
class Solution {
fun minOperations(nums: IntArray): Int {
val n = nums.size
// 1 的个数
var cnt1 = 0
var gcbAll = 0
for (x in nums) {
gcbAll = gcb(gcbAll, x)
if (x == 1) cnt1++
}
// 一切数的最大公约数大于 1
if (gcbAll > 1) return -1
// 1 的个数大于 0
if (cnt1 > 0) return n - cnt1
// 操作出原始 “1” 的最小次数
var minCount = n
// 枚举子数组
for (i in 0 until n) {
var gcb = 0
for (j in i until n) {
gcb = gcb(gcb, nums[j])
if (gcb == 1) {
minCount = Math.min(minCount, j - i /* 子数组长度 - 1 */)
break // 持续枚举 i 为起点的子数组不会得到更优解
}
}
}
return minCount + n - 1
}
// 求 x 和 y 的最大公约数(曲折相除法)
private fun gcb(x: Int, y: Int): Int {
var a = x
var b = y
while (b != 0) {
val temp = a % b
a = b
b = temp
}
return a
}
}
复杂度剖析:
- 时刻复杂度:O(n⋅(n+logU))O(n(n + logU)) 其间 n 是 nums 数组的长度,U 是数组元素的最大值。单次 GCD 核算的时刻复杂度是 O(logU)O(logU),乍看起来算法全体的时刻复杂度是 O(n2⋅logU)O(n^2logU),其实不对。由于在每层循环中,每次 GCD 核算并不是独立的,而是贯穿整个内层循环的,所以 GCD 的总时刻取决于数据的最大值 U,在曲折相除中取余的次数也取决于 U。
- 空间复杂度:O(1)O(1) 不考虑成果数组,仅运用常量等级空间。
题解一的复杂度是平方等级的,假如扩大标题数据量到 10^5 要怎么做?
问题笼统
在剖析暴力解法的重复核算之前,我先向你抛出一个 “题外话”:
请你答复:“给定一个整数数组 nums 和方针和 k,怎么求和为 k 的最短子数组?”
- 解法 1:暴力枚举一切子数组,记载出一切子数组和为 k 的最短子数组长度(这与题解一暴力枚举子数组求操作出原始 “1” 的最少操作次数相似);
- 解法 2:咱们从左向右线性遍历,并维护以 num[j] 为右端点的前缀和映射表 。在此基础上,咱们将当时位置 nums[i] 的前缀和与前缀和映射表中的每个元素取差值,就能够快速地取得以 num[i] 为右端点一切子数组的和。别的,由于咱们是从左向右遍历的,所以前缀和映射表记载的索引正好是能够构造最短子数组的索引,子数组长度为 i – j + 1(当然,咱们能够直接 O(1) 查询方针前缀和出现时的索引,而不需求真的用前缀和映射表的每个元素取差值)。
注:这个 “题外话” 与 LeetCode 560.和为 K 的子数组 相似,假如你不熟悉能够先做做看。
那么,这个 “题外话” 与今天这道题有什么关系:
根据 GCB 运算的性质,当咱们以 nums[i] 为左端点,不断向右扩展子数组的右端点时,咱们的方针是求 “GCB 为 1 的子数组” 对吧。与 “求和为 k 的最短子数组” 相似,咱们能够维护以 nums[j] 为左端点的 GCB 映射表 <gcb to 左端点 index>。在此基础上,咱们将当时位置 nums[i] 与 GCB 映射表中的每个元素取 GCB,就能够快速的取得以 nums[i] 为右端点的一切子数组的 GCB。
那听起来这个算法依然是 O(n^2)?不对。
原因在题解一的时刻复杂度剖析中讲到了,由于每次 GCD 核算并不是独立的,而是贯穿整个循环的,GCB 映射表的巨细取决于数据的最大值 U,而不是数据量,最多有 logU 种 GCB。因而优化后算法的时刻复杂度是 O(nlgU),但添加了空间复杂度为 O(lgU)。
示意图
题解二(有序调集)
至此,在题解一的基础上修正 “枚举子数组核算操作出原始 “1” 的最小次数” 不分代码即可:
class Solution {
fun minOperations(nums: IntArray): Int {
// 略...
// 核算操作出原始 “1” 的最小次数
var minCount = n
// gcb 散列表 <gcd to 左端点 index>
var gcbMap = TreeMap<Int, Int>()
// 枚举子数组
for (i in 0 until n) {
val newGcbMap = TreeMap<Int, Int>()
// 枚举 gcb 映射表
for ((gcb, index) in gcbMap) {
newGcbMap[gcb(gcb, nums[i])] = index
}
newGcbMap[nums[i]] = i
// 查看最小的 gcb 是否为 1
val minEntry = newGcbMap.firstEntry()
if (1 == minEntry.key) {
minCount = Math.min(minCount, i - minEntry.value /* 子数组长度 - 1 */)
}
gcbMap = newGcbMap
}
return minCount + n - 1
}
// 求 x 和 y 的最大公约数
private fun gcb(x: Int, y: Int): Int {
// 略...
}
}
复杂度剖析:
- 时刻复杂度:O(n⋅lgU⋅lg(lgU))O(nlgUlg(lgU)) 由于运用了有序调集,所以每一轮迭代中要算上排序时刻 O(lgU⋅lg(lgU))O(lgUlg(lgU));
- 空间复杂度:O(lgU)O(lgU) GCB 映射表空间。
题解三(单调性优化)
思路参考:灵茶山艾府的题解
题解二的时刻复杂度比咱们剖析的复杂度略要一些,怎么寻觅优化空间?
持续剖析 GCB 的数据特征,能够发现:当咱们从左向右遍历时,随着子数组的长度增大,子数组的 GCB 要么不变,要么变小,存在 单调性。 所以,咱们并不需求维护有序调集,GCB 列表中最靠前的元素一定是最小的 GCB。
class Solution {
fun minOperations(nums: IntArray): Int {
// 略...
// 核算操作出原始 “1” 的最小次数
var minCount = n
// gcb 列表 <gcd to 左端点 index>
var gcbs = ArrayList<IntArray>()
// 枚举子数组
for (i in 0 until n) {
val newGcbs = ArrayList<IntArray>()
// 枚举 gcb 列表
for (element in gcbs) {
val gcb = gcb(element[0], nums[i])
if (newGcbs.isEmpty() || newGcbs[newGcbs.size - 1][0] != gcb) {
// 添加 GCB
newGcbs.add(intArrayOf(gcb, element[1]))
} else {
// 原地去重
newGcbs[newGcbs.size - 1][1] = element[1]
}
}
newGcbs.add(intArrayOf(nums[i], i))
// 查看最小的 gcb 是否为 1
val minEntry = newGcbs[0]
if (1 == minEntry[0]) {
minCount = Math.min(minCount, i - minEntry[1] /* 子数组长度 - 1 */)
}
gcbs = newGcbs
}
return minCount + n - 1
}
// 求 x 和 y 的最大公约数
private fun gcb(x: Int, y: Int): Int {
// 略...
}
}
复杂度剖析:
- 时刻复杂度:O(n⋅lgU)O(nlgU)
- 空间复杂度:O(lgU)O(lgU)
相似标题:
- 560.和为 K 的子数组
- 898. 子数组按位或操作
- 1521. 找到最接近方针值的函数值