一 LeakCanary 简介
LeakCanary 是一款 Android 渠道上进行内存走漏检测的东西,其简介及运用办法可参阅 LeakCanary 2.0 作业原理及运用详解 。本文主要从源码角度来剖析其作业流程。
二 源码剖析
LeakCanary 作业流程大致可分为以下 6 个阶段:
- 初始化: 初始化 LeakCanary 内部剖析引擎
- 注册废物目标的监听: 在 Android Framework 中注册监听器,感知五种 Android 内存走漏场景中产生废物目标的机遇
- 监控内存走漏: 为废物目标相关弱引证目标,若一段时刻后引证目标没有按预期进入引证行列,则以为目标产生内存走漏
-
Java Heap Dump: 当走漏目标计数到达阈值时,会触发 Java Heap Dump 并生成
.hprof
文件存储到文件体系中 -
剖析堆快照: 运用 Shark 剖析
.hprof
文件 - 输出剖析陈述: 剖析作业完结后,会在 Logcat 打印剖析结果,也会发送一条体系告诉音讯
2.1 初始化
旧版本的 LeakCanary 需求在 Application 中调用相关初始化 API,而在 LeakCanary2.0 利用了 ContentProvider 的发动机制来间接调用初始化 API, 完结了无侵入的LeakCanary初始化。
在项目工程 leakcanary-object-watcher-android的 AndroidManifext.xml
文件中,注册了一个承继自 ContentProvider 的MainProcessAppWatcherInstaller。运用发动时,会先调用注册的 ContentProvider 的 onCreate 完结初始化
AndroidManifext.xml
<application>
<provider
android:name="leakcanary.internal.MainProcessAppWatcherInstaller"
android:authorities="${applicationId}.leakcanary-installer"
android:enabled="@bool/leak_canary_watcher_auto_install"
android:exported="false"/>
</application>
在 MainProcessAppWatcherInstaller 类的 onCreate 办法中,实际是 AppWatcher.manualInstall(application) 完结了 LeakCanary 的初始化。
MainProcessAppWatcherInstaller.kt
internal class MainProcessAppWatcherInstaller : ContentProvider() {
override fun onCreate(): Boolean {
// 初始化 LeakCanary
val application = context!!.applicationContext as Application
AppWatcher.manualInstall(application)
return true
}
...
}
AppWatcher.kt
@JvmOverloads
fun manualInstall(
application: Application,
retainedDelayMillis: Long = TimeUnit.SECONDS.toMillis(5),
watchersToInstall: List<InstallableWatcher> = appDefaultWatchers(application)
) {
// 保证在主线程,不然抛出 UnsupportedOperationException 异常
checkMainThread()
if (isInstalled) {
throw IllegalStateException(
"AppWatcher already installed, see exception cause for prior install call", installCause
)
}
check(retainedDelayMillis >= 0) {
"retainedDelayMillis $retainedDelayMillis must be at least 0 ms"
}
this.retainedDelayMillis = retainedDelayMillis
if (application.isDebuggableBuild) {
LogcatSharkLog.install()
}
// 初始化 InternalLeakCanary 内部引擎
LeakCanaryDelegate.loadLeakCanary(application)
// 注册四种 Android 走漏场景的监控 Hook 点
watchersToInstall.forEach {
it.install()
}
// Only install after we're fully done with init.
installCause = RuntimeException("manualInstall() first called here")
}
LeakCanary 的初始化工程能够概括为 2 项内容:
-
- 初始化 LeakCanary 内部剖析引擎;
-
- 在 Android Framework 上注册 5 种 Android 走漏场景的监控。
2.2 注册 5 种 Android 走漏场景的监控
在初始过程中,对应 5 种场景的内存走漏监控
AppWatcher.kt
fun appDefaultWatchers(
application: Application,
reachabilityWatcher: ReachabilityWatcher = objectWatcher
): List<InstallableWatcher> {
return listOf(
ActivityWatcher(application, reachabilityWatcher),
FragmentAndViewModelWatcher(application, reachabilityWatcher),
RootViewWatcher(reachabilityWatcher),
ServiceWatcher(reachabilityWatcher)
)
}
Activity 收回监控
在 ActivityWatcher 类中 经过Application#registerActivityLifecycleCallbacks(…)
接口监听 Activity#onDestroy 事情;
ActivityWatcher.kt
private val lifecycleCallbacks =
object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
override fun onActivityDestroyed(activity: Activity) {
// reachabilityWatcher 即 ObjectWatcher
reachabilityWatcher.expectWeaklyReachable(
activity, "${activity::class.java.name} received Activity#onDestroy() callback"
)
}
}
Fragment 与 Fragment View 收回监控:
在 FragmentAndViewModelWatcher 类中经过Application#registerActivityLifecycleCallbacks(…)
接口监听 Fragment 的生命周期:
FragmentAndViewModelWatcher.kt
override fun install() {
application.registerActivityLifecycleCallbacks(lifecycleCallbacks)
}
再来看 FragmentAndViewModelWatcher 生命回调的处理:
FragmentAndViewModelWatcher.kt
private val lifecycleCallbacks =
object : Application.ActivityLifecycleCallbacks by noOpDelegate() {
override fun onActivityCreated(
activity: Activity,
savedInstanceState: Bundle?
) {
for (watcher in fragmentDestroyWatchers) {
//实际调用的是对应的 invoke 办法
watcher(activity)
}
}
}
FragmentAndViewModelWatcher.kt
private val fragmentDestroyWatchers: List<(Activity) -> Unit> = run {
// fragmentDestroyWatchers 列表,支撑不同 Fragment 实例的检测;
// 这儿的 watcher 都承继自(Activity)->Unit 表示办法类型/函数类型,
// 参数为 Activity,回来值为空;由于是办法类型所以需求重写 invoke 办法
val fragmentDestroyWatchers = mutableListOf<(Activity) -> Unit>()
//Android O 后构建 AndroidOFragmentDestroyWatcher
if (SDK_INT >= O) {
fragmentDestroyWatchers.add(
AndroidOFragmentDestroyWatcher(reachabilityWatcher)
)
}
// 假如 Class.for(className)能找到 androidx.fragment.app.Fragment 和
// leakcanary.internal.AndroidXFragmentDestroyWatcher 则增加 AndroidXFragmentDestroyWatcher 则增加
getWatcherIfAvailable(
ANDROIDX_FRAGMENT_CLASS_NAME,
ANDROIDX_FRAGMENT_DESTROY_WATCHER_CLASS_NAME,
reachabilityWatcher
)?.let {
fragmentDestroyWatchers.add(it)
}
//假如 Class.for(className)能找到 android.support.v4.app.Fragment 和
//leakcanary.internal.AndroidSupportFragmentDestroyWatcher 则增加 AndroidSupportFragmentDestroyWatcher
getWatcherIfAvailable(
ANDROID_SUPPORT_FRAGMENT_CLASS_NAME,
ANDROID_SUPPORT_FRAGMENT_DESTROY_WATCHER_CLASS_NAME,
reachabilityWatcher
)?.let {
fragmentDestroyWatchers.add(it)
}
fragmentDestroyWatchers
}
以 AndroidX Fragment 为例,AndroidXFragmentDestroyWatcher 的 invoke 办法完结:
AndroidXFragmentDestroyWatcher.kt
override fun invoke(activity: Activity) {
if (activity is FragmentActivity) {
//取得对应的 FragmentManager,注册生命周期回调
val supportFragmentManager = activity.supportFragmentManager
supportFragmentManager.registerFragmentLifecycleCallbacks(fragmentLifecycleCallbacks, true)
//增加了 ViewModelStoreOwner 为 Activity 的 ViewModelClearedWatcher 监测
ViewModelClearedWatcher.install(activity, reachabilityWatcher)
}
}
LeakCanary 在 onFragmentDestroyed 回调里边来处理查看 Fragment 是否正常被收回的检测逻辑。
AndroidXFragmentDestroyWatcher.kt
override fun onFragmentDestroyed(
fm: FragmentManager,
fragment: Fragment
) {
reachabilityWatcher.expectWeaklyReachable(
fragment, "${fragment::class.java.name} received Fragment#onDestroy() callback"
)
}
LeakCanary 在 onFragmentViewDestroyed 回调里边来处理查看 Fragment 的 View 是否正常被收回的检测逻辑。
AndroidXFragmentDestroyWatcher.kt
override fun onFragmentViewDestroyed(
fm: FragmentManager,
fragment: Fragment
) {
val view = fragment.view
if (view != null) {
reachabilityWatcher.expectWeaklyReachable(
view, "${fragment::class.java.name} received Fragment#onDestroyView() callback " +
"(references to its views should be cleared to prevent leaks)"
)
}
ViewModel 监控
由于 Android Framework 未供给设置 ViewModel#onClear() 大局监听的办法,所以 LeakCanary 是经过 Hook 的办法完结。即:在 Activity#onCreate 和 Fragment#onCreate 事情中实例化一个自定义 ViewModel,在进入 ViewModel#onClear() 办法时,经过反射获取当时效果域中一切的 ViewModel 目标交给 ObjectWatcher 监控。
ViewModelClearedWatcher.kt
// ViewModel 的子类
internal class ViewModelClearedWatcher(
storeOwner: ViewModelStoreOwner,
private val reachabilityWatcher: ReachabilityWatcher
) : ViewModel() {
// 反射获取 ViewModelStore 中的 ViewModel 映射表,即可获取当时效果域一切 ViewModel 目标
private val viewModelMap: Map<String, ViewModel>? = try {
val mMapField = ViewModelStore::class.java.getDeclaredField("mMap")
mMapField.isAccessible = true
mMapField[storeOwner.viewModelStore] as Map<String, ViewModel>
} catch (ignored: Exception) {
null
}
override fun onCleared() {
// 遍历当时效果域一切 ViewModel 目标
viewModelMap?.values?.forEach { viewModel ->
// reachabilityWatcher 即 ObjectWatcher
reachabilityWatcher.expectWeaklyReachable(viewModel /*被监控目标*/, "${viewModel::class.java.name} received ViewModel#onCleared() callback")
}
}
companion object {
// 直接在 storeOwner 效果域实例化 ViewModelClearedWatcher 目标
fun install(storeOwner: ViewModelStoreOwner, reachabilityWatcher: ReachabilityWatcher) {
val provider = ViewModelProvider(storeOwner, object : Factory {
override fun <T : ViewModel?> create(modelClass: Class<T>): T =
ViewModelClearedWatcher(storeOwner, reachabilityWatcher) as T
})
provider.get(ViewModelClearedWatcher::class.java)
}
}
}
RootView 监控
由于 Android Framework 未供给设置大局监听 RootView 从 WindowManager 中移除的办法,所以 LeakCanary 是经过 Hook 的办法完结的,这一块是经过 squareup 另一个开源库curtains
完结的。RootView 监控这部分源码也比较复杂了,需求经过 2 步 Hook 来完结:
-
- Hook WMS 服务内部的
WindowManagerGlobal.mViews
RootView 列表,获取 RootView 新增和移除的机遇;
- Hook WMS 服务内部的
-
- 查看 View 对应的 Window 类型,假如是 Dialog 或 DreamService 等类型,则在注册
View#addOnAttachStateChangeListener()
监听,在其间的 onViewDetachedFromWindow() 回调中将 View 目标交给 ObjectWatcher 监控。
- 查看 View 对应的 Window 类型,假如是 Dialog 或 DreamService 等类型,则在注册
LeakCanary 源码摘要如下:
RootViewWatcher.kt
override fun install() {
// 1. 注册 RootView 监听
Curtains.onRootViewsChangedListeners += listener
}
private val listener = OnRootViewAddedListener { rootView ->
val trackDetached = when(rootView.windowType) {
PHONE_WINDOW -> {
when (rootView.phoneWindow?.callback?.wrappedCallback) {
// Activity 类型现已在 ActivityWatcher 中监控了,不需求重复监控
is Activity -> false
is Dialog -> {
// leak_canary_watcher_watch_dismissed_dialogs:Dialog 监控开关
val resources = rootView.context.applicationContext.resources
resources.getBoolean(R.bool.leak_canary_watcher_watch_dismissed_dialogs)
}
// DreamService 屏保等
else -> true
}
}
POPUP_WINDOW -> false
TOOLTIP, TOAST, UNKNOWN -> true
}
if (trackDetached) {
// 2. 注册 View#addOnAttachStateChangeListener 监听
rootView.addOnAttachStateChangeListener(object : OnAttachStateChangeListener {
val watchDetachedView = Runnable {
// 3. 交给 ObjectWatcher 监控
reachabilityWatcher.expectWeaklyReachable(rootView /*被监控目标*/ , "${rootView::class.java.name} received View#onDetachedFromWindow() callback")
}
override fun onViewAttachedToWindow(v: View) {
mainHandler.removeCallbacks(watchDetachedView)
}
override fun onViewDetachedFromWindow(v: View) {
mainHandler.post(watchDetachedView)
}
})
}
}
curtains 源码摘要如下:
RootViewsSpy.kt
private val delegatingViewList = object : ArrayList<View>() {
// 重写 ArrayList#add 办法
override fun add(element: View): Boolean {
// 回调
listeners.forEach { it.onRootViewsChanged(element, true) }
return super.add(element)
}
// 重写 ArrayList#removeAt 办法
override fun removeAt(index: Int): View {
// 回调
val removedView = super.removeAt(index)
listeners.forEach { it.onRootViewsChanged(removedView, false) }
return removedView
}
}
companion object {
fun install(): RootViewsSpy {
return RootViewsSpy().apply {
WindowManagerSpy.swapWindowManagerGlobalMViews { mViews /*原目标*/ ->
// 新目标(lambda 表达式的末行便是回来值)
delegatingViewList.apply { addAll(mViews) }
}
}
}
}
WindowManageSpy.kt
// Hook WMS 服务内部的 WindowManagerGlobal.mViews RootView 列表
// swap 是一个 lambda 表达式,参数为原目标,回来值为注入的新目标
fun swapWindowManagerGlobalMViews(swap: (ArrayList<View>) -> ArrayList<View>) {
windowManagerInstance?.let { windowManagerInstance ->
mViewsField?.let { mViewsField ->
val mViews = mViewsField[windowManagerInstance] as ArrayList<View>
mViewsField[windowManagerInstance] = swap(mViews)
}
}
}
Service 收回监听
由于 Android Framework 未供给设置 Service#onDestroy() 大局监听的办法,所以 LeakCanary 是经过 Hook 的办法完结的。
Service 监控这部分源码比较复杂,需求经过 2 步 Hook 来完结:
- 1、Hook 主线程音讯循环的
mH.mCallback
回调,监听其间的 STOP_SERVICE 音讯,将行将 Destroy 的 Service 目标暂存起来(由于 ActivityThread.H 中没有 DESTROY_SERVICE 音讯,所以不能直接监听到 onDestroy() 事情,需求第 2 步); - 2、运用动态代理 Hook AMS 与 App 通讯的的
IActivityManager
Binder 目标,代理其间的serviceDoneExecuting()
办法,视为 Service#onDestroy() 的履行机遇,拿到暂存的 Service 目标交给 ObjectWatcher 监控。
ServiceWatcher.kt
private var uninstallActivityThreadHandlerCallback: (() -> Unit)? = null
// 暂存行将 Destroy 的 Service
private val servicesToBeDestroyed = WeakHashMap<IBinder, WeakReference<Service>>()
override fun install() {
// 1. Hook mH.mCallback
swapActivityThreadHandlerCallback { mCallback /*原目标*/ ->
// uninstallActivityThreadHandlerCallback:用于撤销 Hook
uninstallActivityThreadHandlerCallback = {
swapActivityThreadHandlerCallback {
mCallback
}
}
// 新目标(lambda 表达式的末行便是回来值)
Handler.Callback { msg ->
// 1.1 Service#onStop() 事情
if (msg.what == STOP_SERVICE) {
val key = msg.obj as IBinder
// 1.2 activityThreadServices:反射获取 ActivityThread mServices 映射表 <IBinder, CreateServiceData>
activityThreadServices[key]?.let {
// 1.3 暂存行将 Destroy 的 Service
servicesToBeDestroyed[token] = WeakReference(service)
}
}
// 1.4 继续履行 Framework 原有逻辑
mCallback?.handleMessage(msg) ?: false
}
}
// 2. Hook AMS IActivityManager
swapActivityManager { activityManagerInterface, activityManagerInstance /*原目标*/ ->
// uninstallActivityManager:用于撤销 Hook
uninstallActivityManager = {
swapActivityManager { _, _ ->
activityManagerInstance
}
}
// 新目标(lambda 表达式的末行便是回来值)
Proxy.newProxyInstance(activityManagerInterface.classLoader, arrayOf(activityManagerInterface)) { _, method, args ->
// 2.1 代理 serviceDoneExecuting() 办法
if (METHOD_SERVICE_DONE_EXECUTING == method.name) {
// 2.2 取出暂存的行将 Destroy 的 Service
val token = args!![0] as IBinder
if (servicesToBeDestroyed.containsKey(token)) {
servicesToBeDestroyed.remove(token)?.also { serviceWeakReference ->
// 2.3 交给 ObjectWatcher 监控
serviceWeakReference.get()?.let { service ->
reachabilityWatcher.expectWeaklyReachable(service /*被监控目标*/, "${service::class.java.name} received Service#onDestroy() callback")
}
}
}
}
// 2.4 继续履行 Framework 原有逻辑
method.invoke(activityManagerInstance, *args)
}
}
}
override fun uninstall() {
// 封闭 mH.mCallback 的 Hook
uninstallActivityManager?.invoke()
uninstallActivityThreadHandlerCallback?.invoke()
uninstallActivityManager = null
uninstallActivityThreadHandlerCallback = null
}
// 运用反射修改 ActivityThread 的主线程音讯循环的 mH.mCallback
// swap 是一个 lambda 表达式,参数为原目标,回来值为注入的新目标
private fun swapActivityThreadHandlerCallback(swap: (Handler.Callback?) -> Handler.Callback?) {
val mHField = activityThreadClass.getDeclaredField("mH").apply { isAccessible = true }
val mH = mHField[activityThreadInstance] as Handler
val mCallbackField = Handler::class.java.getDeclaredField("mCallback").apply { isAccessible = true }
val mCallback = mCallbackField[mH] as Handler.Callback?
// 将 swap 的回来值作为新目标,完结 Hook
mCallbackField[mH] = swap(mCallback)
}
// 运用反射修改 AMS 与 App 通讯的 IActivityManager Binder 目标
// swap 是一个 lambda 表达式,参数为 IActivityManager 的 Class 目标和接口原完结目标,回来值为注入的新目标
private fun swapActivityManager(swap: (Class<*>, Any) -> Any) {
val singletonClass = Class.forName("android.util.Singleton")
val mInstanceField = singletonClass.getDeclaredField("mInstance").apply { isAccessible = true }
val singletonGetMethod = singletonClass.getDeclaredMethod("get")
val (className, fieldName) = if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
"android.app.ActivityManager" to "IActivityManagerSingleton"
} else {
"android.app.ActivityManagerNative" to "gDefault"
}
val activityManagerClass = Class.forName(className)
val activityManagerSingletonField = activityManagerClass.getDeclaredField(fieldName).apply { isAccessible = true }
val activityManagerSingletonInstance = activityManagerSingletonField[activityManagerClass]
// Calling get() instead of reading from the field directly to ensure the singleton is
// created.
val activityManagerInstance = singletonGetMethod.invoke(activityManagerSingletonInstance)
val iActivityManagerInterface = Class.forName("android.app.IActivityManager")
// 将 swap 的回来值作为新目标,完结 Hook
mInstanceField[activityManagerSingletonInstance] = swap(iActivityManagerInterface, activityManagerInstance!!)
}
至此,LeakCanary 初始化完结,而且成功在 Android Framework 的各个位置安插监控,完结对 Activity 和 Service 等目标进入无用状况的监听。
2.3 监控内存走漏
完结以上步骤后,会交给ObjectWatcher
监控,它主要经过以下 3 步来判别目标是否走漏:
-
1. 为被监控目标
watchedObject
创立一个KeyedWeakReference
弱引证,并存储到 <UUID, KeyedWeakReference> 的映射表中; -
2. postDelay 五秒后查看引证目标是否出现在引证行列中,出现在行列则阐明被监控目标未产生走漏。随后,移除映射表中未走漏的记载,更新走漏的引证目标的
retainedUptimeMillis
字段以符号为走漏; -
3. 经过回调
onObjectRetained
告知 LeakCanary 内部产生新的内存走漏。
AppWatcher.kt
val objectWatcher = ObjectWatcher(
// lambda 表达式获取当时体系时刻
clock = { SystemClock.uptimeMillis() },
// lambda 表达式完结 Executor SAM 接口
checkRetainedExecutor = {
mainHandler.postDelayed(it, retainedDelayMillis)
},
// lambda 表达式获取监控开关
isEnabled = { true }
)
ObjectWatcher.kt
class ObjectWatcher constructor(
private val clock: Clock,
private val checkRetainedExecutor: Executor,
private val isEnabled: () -> Boolean = { true }
) : ReachabilityWatcher {
if (!isEnabled()) {
// 监控开关
return
}
// 被监控的目标映射表 <UUID,KeyedWeakReference>
private val watchedObjects = mutableMapOf<String, KeyedWeakReference>()
// KeyedWeakReference 相关的引证行列,用于判别目标是否走漏
private val queue = ReferenceQueue<Any>()
// 1. 为 watchedObject 目标增加监控
@Synchronized
override fun expectWeaklyReachable(
watchedObject: Any,
description: String
) {
// 1.1 移除 watchedObjects 中未走漏的引证目标
removeWeaklyReachableObjects()
// 1.2 新建一个 KeyedWeakReference 引证目标
val key = UUID.randomUUID().toString()
val watchUptimeMillis = clock.uptimeMillis()
watchedObjects[key] = KeyedWeakReference(watchedObject, key, description, watchUptimeMillis, queue)
// 2. 五秒后查看引证目标是否出现在引证行列中,不然断定产生走漏
// checkRetainedExecutor 相当于 postDelay 五秒后履行 moveToRetained() 办法
checkRetainedExecutor.execute {
moveToRetained(key)
}
}
// 2. 五秒后查看引证目标是否出现在引证行列中,不然阐明产生走漏
@Synchronized
private fun moveToRetained(key: String) {
// 2.1 移除 watchedObjects 中未走漏的引证目标
removeWeaklyReachableObjects()
// 2.2 依然存在的引证目标被断定产生走漏
val retainedRef = watchedObjects[key]
if (retainedRef != null) {
retainedRef.retainedUptimeMillis = clock.uptimeMillis()
// 3. 回调告诉 LeakCanary 内部处理
onObjectRetainedListeners.forEach { it.onObjectRetained() }
}
}
// 移除未走漏目标对应的 KeyedWeakReference
private fun removeWeaklyReachableObjects() {
var ref: KeyedWeakReference?
do {
ref = queue.poll() as KeyedWeakReference?
if (ref != null) {
// KeyedWeakReference 出现在引证行列中,阐明未产生走漏
watchedObjects.remove(ref.key)
}
} while (ref != null)
}
// 4. Heap Dump 后移除一切监控时刻早于 heapDumpUptimeMillis 的引证目标
@Synchronized
fun clearObjectsWatchedBefore(heapDumpUptimeMillis: Long) {
val weakRefsToRemove = watchedObjects.filter { it.value.watchUptimeMillis <= heapDumpUptimeMillis }
weakRefsToRemove.values.forEach { it.clear() }
watchedObjects.keys.removeAll(weakRefsToRemove.keys)
}
// 获取是否有内存走漏目标
val hasRetainedObjects: Boolean
@Synchronized get() {
// 移除 watchedObjects 中未走漏的引证目标
removeWeaklyReachableObjects()
return watchedObjects.any { it.value.retainedUptimeMillis != -1L }
}
// 获取内存走漏目标计数
val retainedObjectCount: Int
@Synchronized get() {
// 移除 watchedObjects 中未走漏的引证目标
removeWeaklyReachableObjects()
return watchedObjects.count { it.value.retainedUptimeMillis != -1L }
}
}
被监控目标watchedObject
相关的弱引证目标:
KeyedWeakReference.kt
class KeyedWeakReference(
// 被监控目标
referent: Any,
// 仅有 Key,依据此字段匹配映射表中的记载
val key: String,
// 描述信息
val description: String,
// 监控开端时刻,即引证目标创立时刻
val watchUptimeMillis: Long,
// 相关的引证行列
referenceQueue: ReferenceQueue<Any>
) : WeakReference<Any>(referent, referenceQueue) {
// 记载实际目标 referent 被断定为走漏目标的时刻
// -1L 表示非走漏目标,或许还未断定完结
@Volatile
var retainedUptimeMillis = -1L
override fun clear() {
super.clear()
retainedUptimeMillis = -1L
}
companion object {
// 记载最近一次触发 Heap Dump 的时刻
@Volatile
@JvmStatic var heapDumpUptimeMillis = 0L
}
}
2.4 Dump heap 获取内存快照文件
ObjectWatcher 断定被监控目标产生走漏后,会经过接口办法 OnObjectRetainedListener#onObjectRetained()
回调到 LeakCanary 内部的管理器 InternalLeakCanary 处理(在前文 AppWatcher 初始化中说到过)。LeakCanary 不会每次发现内存走漏目标都进行剖析作业,而会进行两个阻拦:
- 1. 走漏目标计数未到达阈值,或许进入后台时刻未到达阈值;
-
2. 核算间隔上一次 HeapDump 未超越 60s。
源码摘要如下:
InternalLeakCanary.kt
// 从 ObjectWatcher 回调过来
override fun onObjectRetained() = scheduleRetainedObjectCheck()
private lateinit var heapDumpTrigger: HeapDumpTrigger
fun scheduleRetainedObjectCheck() {
if (this::heapDumpTrigger.isInitialized) {
heapDumpTrigger.scheduleRetainedObjectCheck()
}
}
HeapDumpTrigger.kt
fun scheduleRetainedObjectCheck(delayMillis: Long = 0L) {
// 已简化:源码此处运用时刻戳阻拦,避免重复 postDelayed
backgroundHandler.postDelayed({
checkRetainedObjects()
}, delayMillis)
}
private fun checkRetainedObjects() {
val config = configProvider()
// 走漏目标计数
var retainedReferenceCount = objectWatcher.retainedObjectCount
if (retainedReferenceCount > 0) {
// 自动触发 GC,并等候 100 ms
gcTrigger.runGc()
// 重新获取走漏目标计数
retainedReferenceCount = objectWatcher.retainedObjectCount
}
// 阻拦 1:走漏目标计数未到达阈值,或许进入后台时刻未到达阈值
if (retainedKeysCount < retainedVisibleThreshold) {
// App 坐落前台或许刚刚进入后台
if (applicationVisible || applicationInvisibleLessThanWatchPeriod) {
// 发送告诉提示
showRetainedCountNotification("App visible, waiting until %d retained objects")
// 推迟 2 秒再查看
scheduleRetainedObjectCheck(WAIT_FOR_OBJECT_THRESHOLD_MILLIS)
return;
}
}
// 阻拦 2:核算间隔上一次 HeapDump 未超越 60s
val now = SystemClock.uptimeMillis()
val elapsedSinceLastDumpMillis = now - lastHeapDumpUptimeMillis
if (elapsedSinceLastDumpMillis < WAIT_BETWEEN_HEAP_DUMPS_MILLIS) {
// 发送告诉提示
showRetainedCountNotification("Last heap dump was less than a minute ago")
// 推迟 (60 - elapsedSinceLastDumpMillis)s 再查看
scheduleRetainedObjectCheck(WAIT_BETWEEN_HEAP_DUMPS_MILLIS - elapsedSinceLastDumpMillis)
return
}
// 移除告诉提示
dismissRetainedCountNotification()
// 触发 HeapDump(此刻,运用有可能在后台)
dumpHeap(...)
}
// 真实开端履行 Heap Dump
private fun dumpHeap(...) {
// 1. 获取文件存储供给器
val directoryProvider = InternalLeakCanary.createLeakDirectoryProvider(InternalLeakCanary.application)
// 2. 创立 .hprof File 文件
val heapDumpFile = directoryProvider.newHeapDumpFile()
// 3. 履行 Heap Dump
// Heap Dump 开端时刻戳
val heapDumpUptimeMillis = SystemClock.uptimeMillis()
// heapDumper.dumpHeap:终究调用 Debug.dumpHprofData(heapDumpFile.absolutePath)
configProvider().heapDumper.dumpHeap(heapDumpFile)
// 4. 清除 ObjectWatcher 中过期的监控
objectWatcher.clearObjectsWatchedBefore(heapDumpUptimeMillis)
// 5. 剖析堆快照
InternalLeakCanary.sendEvent(HeapDump(currentEventUniqueId!!, heapDumpFile, durationMillis, reason))
}
2.5 剖析堆快照
在前面的作业中,LeakCanary 现已成功生成 .hprof
堆快照文件,而且发送了一个 LeakCanary 内部事情 HeapDump
。LeakCanary 的装备项中设置了多个事情顾客 EventListener,其间与 HeapDump 事情有关的是 when{}
代码块中三个顾客。不过,这三个顾客并不是并存的,而是会依据 App 当时的依靠项而挑选最优的履行战略:
- 1 – WorkerManager 多进程剖析
- 2 – WorkManager 异步剖析
-
3 – 异步线程剖析(兜底战略)
LeakCanary 装备项中的事情顾客:
LeakCanary.kt
data class Config(
val eventListeners: List<EventListener> = listOf(
LogcatEventListener,
ToastEventListener,
LazyForwardingEventListener {
if (InternalLeakCanary.formFactor == TV) TvEventListener else NotificationEventListener
},
when {
// 战略 1 - WorkerManager 多进程剖析
RemoteWorkManagerHeapAnalyzer.remoteLeakCanaryServiceInClasspath ->RemoteWorkManagerHeapAnalyzer
// 战略 2 - WorkManager 异步剖析
WorkManagerHeapAnalyzer.validWorkManagerInClasspath -> WorkManagerHeapAnalyzer
// 战略 3 - 异步线程剖析(兜底战略)
else -> BackgroundThreadHeapAnalyzer
}
),
...
)
战略 1 – WorkerManager 多进程剖析: 判别是否能够类加载 RemoteLeakCanaryWorkerService
,这个类坐落前文说到的 com.squareup.leakcanary:leakcanary-android-process:2.9.1
依靠中。假如能够类加载成功则视为有依靠,运用 WorkerManager 多进程剖析;
RemoteWorkManagerHeapAnalyzer.kt
object RemoteWorkManagerHeapAnalyzer : EventListener {
// 经过类加载是否成功,判别是否存在依靠
internal val remoteLeakCanaryServiceInClasspath by lazy {
try {
Class.forName("leakcanary.internal.RemoteLeakCanaryWorkerService")
true
} catch (ignored: Throwable) {
false
}
}
override fun onEvent(event: Event) {
if (event is HeapDump) {
// 创立并分发 WorkManager 多进程恳求
val heapAnalysisRequest = OneTimeWorkRequest.Builder(RemoteHeapAnalyzerWorker::class.java).apply {
val dataBuilder = Data.Builder()
.putString(ARGUMENT_PACKAGE_NAME, application.packageName)
.putString(ARGUMENT_CLASS_NAME, REMOTE_SERVICE_CLASS_NAME)
setInputData(event.asWorkerInputData(dataBuilder))
with(WorkManagerHeapAnalyzer) {
addExpeditedFlag()
}
}.build()
WorkManager.getInstance(application).enqueue(heapAnalysisRequest)
}
}
}
RemoteHeapAnalyzerWorker.kt
internal class RemoteHeapAnalyzerWorker(appContext: Context, workerParams: WorkerParameters) : RemoteListenableWorker(appContext, workerParams) {
override fun startRemoteWork(): ListenableFuture<Result> {
val heapDump = inputData.asEvent<HeapDump>()
val result = SettableFuture.create<Result>()
heapAnalyzerThreadHandler.post {
// 1.1 剖析堆快照
val doneEvent = AndroidDebugHeapAnalyzer.runAnalysisBlocking(heapDump, isCanceled = {
result.isCancelled
}) { progressEvent ->
// 1.2 发送剖析进展事情
if (!result.isCancelled) {
InternalLeakCanary.sendEvent(progressEvent)
}
}
// 1.3 发送剖析完结事情
InternalLeakCanary.sendEvent(doneEvent)
result.set(Result.success())
}
return result
}
}
-
战略 2 – WorkManager 异步剖析:判别是否能够类加载
androidx.work.WorkManager
,假如能够,则运用 WorkManager 异步剖析;
WorkManagerHeapAnalyzer.kt
internal val validWorkManagerInClasspath by lazy {
// 判别 WorkManager 依靠,代码略
}
override fun onEvent(event: Event) {
if (event is HeapDump) {
// 创立并分发 WorkManager 恳求
val heapAnalysisRequest = OneTimeWorkRequest.Builder(HeapAnalyzerWorker::class.java).apply {
setInputData(event.asWorkerInputData())
addExpeditedFlag()
}.build()
val application = InternalLeakCanary.application
WorkManager.getInstance(application).enqueue(heapAnalysisRequest)
}
}
HeapAnalyzerWorker.kt
internal class HeapAnalyzerWorker(appContext: Context, workerParams: WorkerParameters) : Worker(appContext, workerParams) {
override fun doWork(): Result {
// 2.1 剖析堆快照
val doneEvent = AndroidDebugHeapAnalyzer.runAnalysisBlocking(inputData.asEvent()) { event ->
// 2.2 发送剖析进展事情
InternalLeakCanary.sendEvent(event)
}
// 2.3 发送剖析完结事情
InternalLeakCanary.sendEvent(doneEvent)
return Result.success()
}
}
- 战略 3 – 异步线程剖析(兜底战略):假如以上战略未射中,则直接运用子线程兜底履行。
BackgroundThreadHeapAnalyzer.kt
object BackgroundThreadHeapAnalyzer : EventListener {
// HandlerThread
internal val heapAnalyzerThreadHandler by lazy {
val handlerThread = HandlerThread("HeapAnalyzer")
handlerThread.start()
Handler(handlerThread.looper)
}
override fun onEvent(event: Event) {
if (event is HeapDump) {
// HandlerThread 恳求
heapAnalyzerThreadHandler.post {
// 3.1 剖析堆快照
val doneEvent = AndroidDebugHeapAnalyzer.runAnalysisBlocking(event) { event ->
// 3.2 发送剖析进展事情
InternalLeakCanary.sendEvent(event)
}
// 3.3 发送剖析完结事情
InternalLeakCanary.sendEvent(doneEvent)
}
}
}
}
能够看到,不论选用那种履行战略,终究履行的逻辑都是相同的:
-
- 剖析堆快照;
-
- 发送剖析进展事情;
-
- 发送剖析完结事情。
在前面的剖析中,咱们现已知道 LeakCanary 是经过子线程或许子进程履行 AndroidDebugHeapAnalyzer.runAnalysisBlocking
办法来剖析堆快照的,并在剖析过程中和剖析完结后发送回调事情。现在咱们来阅读 LeakCanary 的堆快照剖析过程:
AndroidDebugHeapAnalyzer.kt
fun runAnalysisBlocking(
heapDumped: HeapDump,
isCanceled: () -> Boolean = { false },
progressEventListener: (HeapAnalysisProgress) -> Unit
): HeapAnalysisDone<*> {
...
// 1. .hprof 文件
val heapDumpFile = heapDumped.file
// 2. 剖析堆快照
val heapAnalysis = analyzeHeap(heapDumpFile, progressListener, isCanceled)
val analysisDoneEvent = ScopedLeaksDb.writableDatabase(application) { db ->
// 3. 将剖析陈述耐久化到 DB
val id = HeapAnalysisTable.insert(db, heapAnalysis)
// 4. 发送剖析完结事情(回来到上一级进行发送:InternalLeakCanary.sendEvent(doneEvent))
val showIntent = LeakActivity.createSuccessIntent(application, id)
val leakSignatures = fullHeapAnalysis.allLeaks.map { it.signature }.toSet()
val leakSignatureStatuses = LeakTable.retrieveLeakReadStatuses(db, leakSignatures)
val unreadLeakSignatures = leakSignatureStatuses.filter { (_, read) -> !read}.keys.toSet()
HeapAnalysisSucceeded(heapDumped.uniqueId, fullHeapAnalysis, unreadLeakSignatures ,showIntent)
}
return analysisDoneEvent
}
开端进入 Shark 组件:
shark.HeapAnalyzer.kt
// analyze -> analyze -> FindLeakInput.analyzeGraph
private fun FindLeakInput.analyzeGraph(
metadataExtractor: MetadataExtractor,
leakingObjectFinder: LeakingObjectFinder,
heapDumpFile: File,
analysisStartNanoTime: Long
): HeapAnalysisSuccess {
...
// 1. 在堆快照中寻觅走漏目标,默认是寻觅 KeyedWeakReference 类型目标
// leakingObjectFinder 默认是 KeyedWeakReferenceFinder
val leakingObjectIds = leakingObjectFinder.findLeakingObjectIds(graph)
// 2. 剖析走漏目标的最短引证链,并依照运用链签名分类
// applicationLeaks: Application Leaks
// librbuildLeakTracesaryLeaks:Library Leaks
// unreachableObjects:LeakCanary 无法剖分出强引证链,能够提 Stack Overflow
val (applicationLeaks, libraryLeaks, unreachableObjects) = findLeaks(leakingObjectIds)
// 3. 回来剖析完结事情
return HeapAnalysisSuccess(...)
}
private fun FindLeakInput.findLeaks(leakingObjectIds: Set<Long>): LeaksAndUnreachableObjects {
// PathFinder:引证链剖析器
val pathFinder = PathFinder(graph, listener, referenceReader, referenceMatchers)
// pathFindingResults:完整引证链
val pathFindingResults = pathFinder.findPathsFromGcRoots(leakingObjectIds, computeRetainedHeapSize)
// unreachableObjects:LeakCanary 无法剖分出强引证链(相当于 LeakCanary 的 Bug)
val unreachableObjects = findUnreachableObjects(pathFindingResults, leakingObjectIds)
// shortestPaths:最短引证链
val shortestPaths = deduplicateShortestPaths(pathFindingResults.pathsToLeakingObjects)
// inspectedObjectsByPath:符号信息
val inspectedObjectsByPath = inspectObjects(shortestPaths)
// retainedSizes:走漏内存大小
val retainedSizes = computeRetainedSizes(inspectedObjectsByPath, pathFindingResults.dominatorTree)
// 生成单个走漏问题的剖析陈述,并依照运用链签名分组,依照 Application Leaks 和 Library Leaks 分类,依照 Application Leaks 和 Library Leaks 分类
// applicationLeaks: Application Leaks
// librbuildLeakTracesaryLeaks:Library Leaks
val (applicationLeaks, librbuildLeakTracesaryLeaks) = buildLeakTraces(shortestPaths, inspectedObjectsByPath, retainedSizes)
return LeaksAndUnreachableObjects(applicationLeaks, libraryLeaks, unreachableObjects)
}
能够看到,堆快照剖析终究是交给 Shark 中的 HeapAnalizer 完结的,中心流程是:
- 1、在堆快照中寻觅走漏目标,默认是寻觅 KeyedWeakReference 类型目标;
- 2、剖析 KeyedWeakReference 目标的最短引证链,并依照引证链签名分组,依照 Application Leaks 和 Library Leaks 分类;
- 3、回来剖析完结事情。
侧重看最复杂的第 2 步:
shark.HeapAnalyzer.kt
// 生成单个走漏问题的剖析陈述,并依照运用链签名分组,依照 Application Leaks 和 Library Leaks 分类,依照 Application Leaks 和 Library Leaks 分类
private fun FindLeakInput.buildLeakTraces(
shortestPaths: List<ShortestPath> /*最短引证链*/ ,
inspectedObjectsByPath: List<List<InspectedObject>> /*符号信息*/ ,
retainedSizes: Map<Long, Pair<Int, Int>>? /*走漏内存大小*/
): Pair<List<ApplicationLeak>, List<LibraryLeak>> {
// Application Leaks
val applicationLeaksMap = mutableMapOf<String, MutableList<LeakTrace>>()
// Library Leaks
val libraryLeaksMap = mutableMapOf<String, Pair<LibraryLeakReferenceMatcher, MutableList<LeakTrace>>>()
shortestPaths.forEachIndexed { pathIndex, shortestPath ->
// 符号信息
val inspectedObjects = inspectedObjectsByPath[pathIndex]
// 实例化引证链上的每个目标快照(非置疑目标的 leakingStatus 为 NOT_LEAKING)
val leakTraceObjects = buildLeakTraceObjects(inspectedObjects, retainedSizes)
val referencePath = buildReferencePath(shortestPath, leakTraceObjects)
// 剖析陈述
val leakTrace = LeakTrace(
gcRootType = GcRootType.fromGcRoot(shortestPath.root.gcRoot),
referencePath = referencePath,
leakingObject = leakTraceObjects.last()
)
val firstLibraryLeakMatcher = shortestPath.firstLibraryLeakMatcher()
if (firstLibraryLeakMatcher != null) {
// Library Leaks
val signature: String = firstLibraryLeakMatcher.pattern.toString().createSHA1Hash()
libraryLeaksMap.getOrPut(signature) { firstLibraryLeakMatcher to mutableListOf() }.second += leakTrace
} else {
// Application Leaks
applicationLeaksMap.getOrPut(leakTrace.signature) { mutableListOf() } += leakTrace
}
}
val applicationLeaks = applicationLeaksMap.map { (_, leakTraces) ->
// 实例化为 ApplicationLeak 类型
ApplicationLeak(leakTraces)
}
val libraryLeaks = libraryLeaksMap.map { (_, pair) ->
// 实例化为 LibraryLeak 类型
val (matcher, leakTraces) = pair
LibraryLeak(leakTraces, matcher.pattern, matcher.description)
}
return applicationLeaks to libraryLeaks
}
// 生成单个走漏问题的剖析陈述,并依照运用链签名分组,依照 Application Leaks 和 Library Leaks 分类,依照 Application Leaks 和 Library Leaks 分类
private fun FindLeakInput.buildLeakTraces(
shortestPaths: List<ShortestPath> /*最短引证链*/ ,
inspectedObjectsByPath: List<List<InspectedObject>> /*符号信息*/ ,
retainedSizes: Map<Long, Pair<Int, Int>>? /*走漏内存大小*/
): Pair<List<ApplicationLeak>, List<LibraryLeak>> {
// Application Leaks
val applicationLeaksMap = mutableMapOf<String, MutableList<LeakTrace>>()
// Library Leaks
val libraryLeaksMap = mutableMapOf<String, Pair<LibraryLeakReferenceMatcher, MutableList<LeakTrace>>>()
shortestPaths.forEachIndexed { pathIndex, shortestPath ->
// 符号信息
val inspectedObjects = inspectedObjectsByPath[pathIndex]
// 实例化引证链上的每个目标快照(非置疑目标的 leakingStatus 为 NOT_LEAKING)
val leakTraceObjects = buildLeakTraceObjects(inspectedObjects, retainedSizes)
val referencePath = buildReferencePath(shortestPath, leakTraceObjects)
// 剖析陈述
val leakTrace = LeakTrace(
gcRootType = GcRootType.fromGcRoot(shortestPath.root.gcRoot),
referencePath = referencePath,
leakingObject = leakTraceObjects.last()
)
val firstLibraryLeakMatcher = shortestPath.firstLibraryLeakMatcher()
if (firstLibraryLeakMatcher != null) {
// Library Leaks
val signature: String = firstLibraryLeakMatcher.pattern.toString().createSHA1Hash()
libraryLeaksMap.getOrPut(signature) { firstLibraryLeakMatcher to mutableListOf() }.second += leakTrace
} else {
// Application Leaks
applicationLeaksMap.getOrPut(leakTrace.signature) { mutableListOf() } += leakTrace
}
}
val applicationLeaks = applicationLeaksMap.map { (_, leakTraces) ->
// 实例化为 ApplicationLeak 类型
ApplicationLeak(leakTraces)
}
val libraryLeaks = libraryLeaksMap.map { (_, pair) ->
// 实例化为 LibraryLeak 类型
val (matcher, leakTraces) = pair
LibraryLeak(leakTraces, matcher.pattern, matcher.description)
}
return applicationLeaks to libraryLeaks
}
2.6 输出剖析陈述
LeakCanary 会运用 ObjectInspector 目标检索器在引证链上的节点中符号必要的信息和状况,符号信息会显示在剖析陈述中,而且会影响陈述中的提示。而引证链 LEAKING
节点以后到第一个 NOT_LEAKING
节点中间的节点,才会用 ~~~
下划线符号为置疑目标。
LeakCanary 经过 leakingObjectFinder
符号引证信息,leakingObjectFinder 默认是 AndroidObjectInspectors.appDefaults
,也能够在装备项中自定义。
// inspectedObjectsByPath:筛选出非置疑目标(剖析陈述中 ~~~ 符号的是置疑目标)
val inspectedObjectsByPath = inspectObjects(shortestPaths)
看一下可视化陈述中相关源码:
DisplayLeakAdapter.kt
...
val reachabilityString = when (leakingStatus) {
UNKNOWN -> extra("UNKNOWN")
NOT_LEAKING -> "NO" + extra(" (${leakingStatusReason})")
LEAKING -> "YES" + extra(" (${leakingStatusReason})")
}
...
LeakTrace.kt
// 是否为置疑目标
fun referencePathElementIsSuspect(index: Int): Boolean {
return when (referencePath[index].originObject.leakingStatus) {
UNKNOWN -> true
NOT_LEAKING -> index == referencePath.lastIndex || referencePath[index + 1].originObject.leakingStatus != NOT_LEAKING
else -> false
}
}
有两个位置处理了HeapAnalysisSucceeded
事情:
- Logcat:打印剖析陈述日志;
- Notification: 发送剖析成功体系告诉音讯。
LogcatEventListener.kt
object LogcatEventListener : EventListener {
...
SharkLog.d { "\u200B\n${LeakTraceWrapper.wrap(event.heapAnalysis.toString(), 120)}" }
...
}
NotificationEventListener.kt
object NotificationEventListener : EventListener {
...
val flags = if (Build.VERSION.SDK_INT >= 23) {
PendingIntent.FLAG_UPDATE_CURRENT or PendingIntent.FLAG_IMMUTABLE
} else {
PendingIntent.FLAG_UPDATE_CURRENT
}
// 点击告诉音讯翻开可视化剖析陈述
val pendingIntent = PendingIntent.getActivity(appContext, 1, event.showIntent, flags)
showHeapAnalysisResultNotification(contentTitle,pendingIntent)
...
}
2.7 小结
最后来总结下 LeakCanary 内存走漏剖析过程:
-
- 初始化
-
- 注册 5 种 Android 走漏场景的监控
-
- 收到销毁回调后,依据要收回目标创立 KeyedWeakReference 并相关 ReferenceQueue
-
- 推迟 5 秒查看相关目标是否被收回
-
- 假如未被收回则开启服务,dump heap 获取内存快照
.hprof
文件
- 假如未被收回则开启服务,dump heap 获取内存快照
-
- 经过 Shark 库解析
.hprof
文件,获取走漏目标,核算走漏目标到 GC roots 的最短途径
- 经过 Shark 库解析
-
- 合并多个走漏途径并输出剖析结果
-
- 将结果展示到可视化界面
三 参阅文献
为什么各大厂自研的内存走漏检测框架都要参阅 LeakCanary?由于它是真强啊!