1. OkHttp的运用
/**
* OkHttp测试类
* @author LTP 2023/6/29
*/
class OkHttpTest {
/** 创立OkHttpClient方针 */
private val okHttpClient = OkHttpClient.Builder().build()
/** 创立Request方针 */
private val request = Request.Builder().url("http://www.baidu.com").build()
/** 创立RealCall方针(Call的仅有接口完结类) */
private val realCall = okHttpClient.newCall(request)
/**
* 同步恳求
*/
@Test
fun getRequestWithSync() {
// 运用同步恳求,realCall履行
realCall.execute().use {
print(it.body?.string())
}
}
/**
* 异步恳求
*/
@Test
fun getRequestWithASync() {
// 运用异步恳求,将realCall参加恳求行列
realCall.enqueue(object : Callback {
override fun onFailure(call: Call, e: IOException) {
e.printStackTrace()
}
override fun onResponse(call: Call, response: Response) {
print(response.body?.string() ?: "123")
}
})
// 得阻塞一会儿线程不让其结束以拿到恳求成果
Thread.sleep(2000)
}
}
- 首要进程有
- 创立OkHttpClient方针
- 创立Request方针
- 创立RealCall方针
- 开端建议恳求,
enqueue
为异步恳求,execute
为同步恳求
2. 恳求进程
- 源码依据OkHttp V4.11.0(直接下载到本地引入lib,BTPJ/OkHttpStudy)
2.1 OkHttpClient方针的创立
OkHttpClient() // 办法1
OkHttpClient.Builder().build() // 办法2
OkHttpClient().newBuilder().build() // 办法3
- 三种办法本质上都是一样的,这儿以办法2为例
- 从创立办法来猜想便是一个典型的制作者形式,OkHttpClient.Builder()创立了一个okHttpClient的内部Builder类方针,里边初始化了一系列的成员变量,着重剖析以下三个
/***
* 制作者形式
*/
class Builder constructor() {
/** 调度器 */
internal var dispatcher: Dispatcher = Dispatcher()
/** 拦截器调集 */
internal val interceptors: MutableList<Interceptor> = mutableListOf()
/** 网络拦截器调集 */
internal val networkInterceptors: MutableList<Interceptor> = mutableListOf()
- 接着运用Builder方针调用了build()办法
/** 调用OkHttpClient结构创立OkHttpClient方针 */
fun build(): OkHttpClient = OkHttpClient(this)
- 其实便是调用的OkHttpClient(builder:Builder)结构
open class OkHttpClient internal constructor(
builder: Builder
) : Cloneable, Call.Factory, WebSocket.Factory {
@get:JvmName("dispatcher")
val dispatcher: Dispatcher = builder.dispatcher
@get:JvmName("interceptors")
val interceptors: List<Interceptor> =
builder.interceptors.toImmutableList()
@get:JvmName("networkInterceptors")
val networkInterceptors: List<Interceptor> =
builder.networkInterceptors.toImmutableList()
- 其实便是典型的制作者形式,经过
Builder
创立的调度器、拦截器等成员变量最终都会赋值给OkHttpClient
2.2 Request方针的创立
Request.Builder().url("http://www.baidu.com").build()
- 也是个制作者形式…
open class Builder {
// 恳求地址
internal var url: HttpUrl? = null
// 恳求办法(例如Get、Post)
internal var method: String
// 恳求头Header调集
internal var headers: Headers.Builder
// 恳求体Body
internal var body: RequestBody? = null
internal var tags: MutableMap<Class<*>, Any> = mutableMapOf()
constructor() {
this.method = "GET"
this.headers = Headers.Builder()
}
- 看下build()办法
open fun build(): Request {
return Request(
checkNotNull(url) { "url == null" },
method,
headers.build(),
body,
tags.toImmutableMap()
)
}
- 其实便是创立了一个Request方针,并把Bulder方针的成员属性赋值给Request
2.3 创立Call方针
okHttpClient.newCall(request)
- 看下newCall
override fun newCall(request: Request): Call = RealCall(this, request, forWebSocket = false)
- 回来了Call接口的仅有完结类RealCall
class RealCall(
val client: OkHttpClient,
val originalRequest: Request,
val forWebSocket: Boolean
) : Call {
...
- 看下Call接口详细界说了哪些办法
/** Call.kt
* 调用预备好的履行恳求。恳求能够被撤销。因为此方针表明单个恳求/呼应对(流),因此不能履行两次
*/
interface Call : Cloneable {
/** 回来启动此调用的原始恳求. */
fun request(): Request
/** 同步恳求(恳求会被立即调用,一向阻塞线程直至恳求被呼应或恳求犯错) */
@Throws(IOException::class)
fun execute(): Response
/**
* 异步恳求,安排在将来某个时刻点履行的恳求,详细调度者是OkHttpClient.dispatcher调度器,
* 调度恳求回来到Callback中
*/
fun enqueue(responseCallback: Callback)
/** 撤销恳求(现已完结的恳求无法被撤销) */
fun cancel()
/** 恳求是否被履行(包含executed和enqueued),多次履行该办法是过错的 */
fun isExecuted(): Boolean
/** 恳求是否被撤销 */
fun isCanceled(): Boolean
/** 恳求超时时刻 */
fun timeout(): Timeout
/** 克隆一个新Call(无论旧Call是否已被履行) */
public override fun clone(): Call
/** 方针创立工厂 */
fun interface Factory {
fun newCall(request: Request): Call
}
}
- RealCall对Call中界说的这些办法进行了完结,详细可看RealCall的完结逻辑,这儿就不贴出来了
2.4 建议恳求
- 先剖析下建议异步恳求
// RealCall.kt
override fun enqueue(responseCallback: Callback) {
// 检测是否已被履行过,履行过抛反常
check(executed.compareAndSet(false, true)) { "Already Executed" }
// 事情监听回调相关,监听恳求建议事情
callStart()
// 将恳求交给调度器,调度器决定什么时候开端恳求
client.dispatcher.enqueue(AsyncCall(responseCallback))
}
private fun callStart() {
this.callStackTrace = Platform.get().getStackTraceForCloseable("response.body().close()")
// 事情监听回调
eventListener.callStart(this)
}
- 真实的逻辑在Dispatcher中
/** Dispatcher.kt
* 何时履行异步恳求的调度器,内部默许是运用ExecutorService完结的
*/
class Dispatcher constructor() {
/** 一起履行的最大恳求数,超越的恳求会在内存中排队等候 */
@get:Synchronized var maxRequests = 64
set(maxRequests) {
require(maxRequests >= 1) { "max < 1: $maxRequests" }
synchronized(this) {
field = maxRequests
}
promoteAndExecute()
}
/** 每台主机可并发履行的最大恳求数(经过URL的主机名) */
@get:Synchronized var maxRequestsPerHost = 5
set(maxRequestsPerHost) {
require(maxRequestsPerHost >= 1) { "max < 1: $maxRequestsPerHost" }
synchronized(this) {
field = maxRequestsPerHost
}
promoteAndExecute()
}
/** 恳求行列空闲回调 */
@set:Synchronized
@get:Synchronized
var idleCallback: Runnable? = null
private var executorServiceOrNull: ExecutorService? = null
/** 线程池(懒汉式保证单例) */
@get:Synchronized
@get:JvmName("executorService") val executorService: ExecutorService
get() {
if (executorServiceOrNull == null) {
executorServiceOrNull = ThreadPoolExecutor(0, Int.MAX_VALUE, 60, TimeUnit.SECONDS,
SynchronousQueue(), threadFactory("$okHttpName Dispatcher", false))
}
return executorServiceOrNull!!
}
/** 待发送到恳求行列的异步恳求 */
private val readyAsyncCalls = ArrayDeque<AsyncCall>()
/** 异步恳求行列 */
private val runningAsyncCalls = ArrayDeque<AsyncCall>()
/** 同步恳求行列 */
private val runningSyncCalls = ArrayDeque<RealCall>()
...
- 看下
dispatcher.enqueue
办法
/** Dispatcher.kt
* 参加行列
*/
internal fun enqueue(call: AsyncCall) {
synchronized(this) {
// 增加进预备发送的调集
readyAsyncCalls.add(call)
// 修正AsyncCall,使其同享对同一主机的现有运转调用的AtomicInteger
if (!call.call.forWebSocket) {
val existingCall = findExistingCallWithHost(call.host)
if (existingCall != null) call.reuseCallsPerHostFrom(existingCall)
}
}
// 处理行列移动并按序履行
promoteAndExecute()
}
/**Dispatcher.kt
* 将符合条件的call从readyAsyncCalls(预备发送的行列)增加到runningAsyncCalls(异步发送行列)中,
* 并在executor服务上运转它们。不能在同步的情况下调用,因为履行调用或许会调用用户代码
*
* @return true if the dispatcher is currently running calls. 假如调度程序当时正在运转,则为true
*/
private fun promoteAndExecute(): Boolean {
this.assertThreadDoesntHoldLock()
// 正在运转的恳求
val executableCalls = mutableListOf<AsyncCall>()
val isRunning: Boolean
synchronized(this) {
val i = readyAsyncCalls.iterator()
while (i.hasNext()) {
val asyncCall = i.next()
// 超越最大恳求数64,跳出整个循环
if (runningAsyncCalls.size >= this.maxRequests) break // Max capacity.
// 单服务器超越最大恳求数,跳出当时单个循环
if (asyncCall.callsPerHost.get() >= this.maxRequestsPerHost) continue // Host max capacity.
// 从恳求预备行列中移除
i.remove()
asyncCall.callsPerHost.incrementAndGet()
executableCalls.add(asyncCall)
// 参加异步恳求行列中
runningAsyncCalls.add(asyncCall)
}
isRunning = runningCallsCount() > 0
}
for (i in 0 until executableCalls.size) {
val asyncCall = executableCalls[i]
// 把恳求使命交给线程池
asyncCall.executeOn(executorService)
}
return isRunning
}
/** RealCall.kt
* 测验将此异步调用参加[executorService]的行列。假如履行器已封闭,则会测验调用失利回调来进行整理
*/
fun executeOn(executorService: ExecutorService) {
client.dispatcher.assertThreadDoesntHoldLock()
var success = false
try {
// 运用线程履行
executorService.execute(this)
success = true
} catch (e: RejectedExecutionException) {
val ioException = InterruptedIOException("executor rejected")
ioException.initCause(e)
noMoreExchanges(ioException)
// 履行失利的回调调用
responseCallback.onFailure(this@RealCall, ioException)
} finally {
if (!success) {
// 发送恳求结束
client.dispatcher.finished(this)
}
}
}
- 最终是交给线程池executorService来处理的,executorService.execute办法接收的是一个Runnable完结类,这个类便是
AsyncCall
,它也是RealCall的非静态内部类,持有对RealCall的引证
/**
* RealCall.kt
* Runnable完结类,会被参加到线程池履行
*/
internal inner class AsyncCall(
private val responseCallback: Callback
) : Runnable {
...
val host: String
get() = originalRequest.url.host
val request: Request
get() = originalRequest
val call: RealCall
get() = this@RealCall
/**
* 测验将此异步调用参加[executorService]的行列。假如履行器已封闭,则会测验调用失利回调来进行整理
*/
fun executeOn(executorService: ExecutorService) {
...
}
override fun run() {
threadName("OkHttp ${redactedUrl()}") {
var signalledCallback = false
timeout.enter()
try {
// 发送恳求,经过一系列的拦截器链最终回来呼应成果
val response = getResponseWithInterceptorChain()
signalledCallback = true
// 回调恳求成功的成果
responseCallback.onResponse(this@RealCall, response)
} catch (e: IOException) {
if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log("Callback failure for ${toLoggableString()}", Platform.INFO, e)
} else {
responseCallback.onFailure(this@RealCall, e)
}
} catch (t: Throwable) {
// 失利后撤销恳求
cancel()
if (!signalledCallback) {
val canceledException = IOException("canceled due to $t")
canceledException.addSuppressed(t)
// 恳求反常,回调恳求失利的成果
responseCallback.onFailure(this@RealCall, canceledException)
}
throw t
} finally {
// 发送恳求结束
client.dispatcher.finished(this)
}
}
}
}
- 看下恳求结束的办法
client.dispatcher.finished(this)
// Dispatcher.kt
/** 被[AsyncCall.run]调用表明恳求完结(异步) */
internal fun finished(call: AsyncCall) {
call.callsPerHost.decrementAndGet()
finished(runningAsyncCalls, call)
}
/** 被[Call.execute]调用表明恳求完结(同步) */
internal fun finished(call: RealCall) {
finished(runningSyncCalls, call)
}
/** 恳求结束的逻辑处理(将当时恳求从恳求行列移除、持续履行下一个恳求、判断是否回调搁置Callback) */
private fun <T> finished(calls: Deque<T>, call: T) {
val idleCallback: Runnable?
synchronized(this) {
// 从恳求使命行列中移除
if (!calls.remove(call)) throw AssertionError("Call wasn't in-flight!")
idleCallback = this.idleCallback
}
// 持续将等候行列中的恳求移入异步行列,并交由线程池履行
val isRunning = promoteAndExecute()
// 假如没有恳求需求被履行,回调恳求行列搁置的callback
if (!isRunning && idleCallback != null) {
idleCallback.run()
}
}
- 简略剖析下同步恳求
realCall.execute()
// RealCall.kt
/** 同步恳求 */
override fun execute(): Response {
check(executed.compareAndSet(false, true)) { "Already Executed" }
timeout.enter()
callStart()
try {
// 直接交由dispatcher履行
client.dispatcher.executed(this)
// 经过getResponseWithInterceptorChain回来恳求呼应
return getResponseWithInterceptorChain()
} finally {
// 发送恳求结束
client.dispatcher.finished(this)
}
}
// Dispatcher.kt
/** 被 [Call.execute] 调用表明正在履行恳求. */
@Synchronized
internal fun executed(call: RealCall) {
// 直接参加恳求行列
runningSyncCalls.add(call)
}
- 可见同步恳求会将恳求Call参加到同步恳求行列,并直接调用
getResponseWithInterceptorChain()
回来呼应成果 - 来张图对整个流程做个总结
3. 拦截器链
- 上面知道回来呼应是经过
getResponseWithInterceptorChain()
这个办法的,看下源码
// RealCall.kt
@Throws(IOException::class)
internal fun getResponseWithInterceptorChain(): Response {
// 构建一个完好的拦截器链
val interceptors = mutableListOf<Interceptor>()
// 用户自界说的拦截器(大局拦截器,能够在任何恳求进程中运用)
interceptors += client.interceptors
// 重试和重定向拦截器
interceptors += RetryAndFollowUpInterceptor(client)
// 桥接拦截器,首要担任恳求和呼应的转换
interceptors += BridgeInterceptor(client.cookieJar)
// 缓存拦截器,首要担任缓存的相关处理
interceptors += CacheInterceptor(client.cache)
// 衔接拦截器,首要担任树立衔接,树立 TCP 衔接或许 TLS 衔接
interceptors += ConnectInterceptor
if (!forWebSocket) {
// 用户自界说的网络拦截器(针对特定类型的恳求运用的拦截器)
interceptors += client.networkInterceptors
}
// 调用服务器拦截器,首要担任网络数据的恳求和呼应,也便是实践的网络I/O操作
interceptors += CallServerInterceptor(forWebSocket)
// 结构详细的拦截器链
val chain = RealInterceptorChain(
call = this,
interceptors = interceptors,
index = 0,
exchange = null,
request = originalRequest,
connectTimeoutMillis = client.connectTimeoutMillis,
readTimeoutMillis = client.readTimeoutMillis,
writeTimeoutMillis = client.writeTimeoutMillis
)
var calledNoMoreExchanges = false
try {
// 拦截器链的履行要害,拦截器的层层调用、层层回来
val response = chain.proceed(originalRequest)
if (isCanceled()) {
response.closeQuietly()
throw IOException("Canceled")
}
// 回来呼应成果
return response
} catch (e: IOException) {
calledNoMoreExchanges = true
throw noMoreExchanges(e) as Throwable
} finally {
if (!calledNoMoreExchanges) {
noMoreExchanges(null)
}
}
}
-
getResponseWithInterceptorChain
办法是整个OkHttp完结职责链形式的核心,在这个办法中除了很多拦截器是要点之外还有chain.proceed
,它利用了职责链形式进行层层调用proceed,层层回来response
// RealInterceptorChain.kt
@Throws(IOException::class)
override fun proceed(request: Request): Response {
...
// 创立并调用拦截器链中的下一个拦截器的intercept办法
val next = copy(index = index + 1, request = request)
val interceptor = interceptors[index]
@Suppress("USELESS_ELVIS")
// 调用下一个拦截器的intercept办法(intercept内部还会调用proceed)
val response = interceptor.intercept(next) ?: throw NullPointerException(
"interceptor $interceptor returned null")
...
return response
}
- 从源码得知,Chain 是用来描述职责链的,并经过其间的 process 办法开端顺次履行链上的每个节点,并回来处理后的 Response。 Chain 的仅有完结为 RealInterceptorChain,能够称之为拦截器职责链,其间的节点由 RealCall 中增加进来的 Interceptor 们组成
- Interceptor 与 Chain 相相互互依赖,相互调用,形成了一个完美的调用链,下面是大致的调用关系链
3.1 RetryAndFollowUpInterceptor
- 除掉自界说拦截器之外第一个履行的拦截器。首要作用是
进行恳求的重试与重定向
(还创立了一个衔接办理池)。在某些情况下,当网络恳求失利时,这个拦截器能够供给一种机制,测验从头衔接到网络,并再次发送恳求。这个进程能够帮助运用程序在出现短暂的网络问题时坚持衔接,进步了体系的可靠性和稳定性。
// RetryAndFollowUpInterceptor.kt
class RetryAndFollowUpInterceptor(private val client: OkHttpClient) : Interceptor {
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val realChain = chain as RealInterceptorChain
var request = chain.request
val call = realChain.call
var followUpCount = 0
var priorResponse: Response? = null
var newExchangeFinder = true
var recoveredFailures = listOf<IOException>()
while (true) {
// newExchangeFinder传true,enterNetworkInterceptorExchange办法会创立一个新的
// ExchangeFinder方针(办理链接池)
call.enterNetworkInterceptorExchange(request, newExchangeFinder)
var response: Response
var closeActiveExchange = true
try {
if (call.isCanceled()) {
throw IOException("Canceled")
}
try {
// 职责链形式,让下一个拦截器处理
response = realChain.proceed(request)
newExchangeFinder = true
} catch (e: RouteException) {
...
val exchange = call.interceptorScopedExchange
// 计算出接收[userResponse]时要宣布的HTTP恳求。
// 这将增加身份验证标头、遵从重定向或处理客户端恳求超时。假如后续操作不必要或不适用,则回来null
val followUp = followUpRequest(response, exchange)
// 获取到的request为空则直接回来response
if (followUp == null) {
if (exchange != null && exchange.isDuplex) {
call.timeoutEarlyExit()
}
closeActiveExchange = false
return response
}
val followUpBody = followUp.body
if (followUpBody != null && followUpBody.isOneShot()) {
closeActiveExchange = false
return response
}
response.body?.closeQuietly()
// 超越最大重试或许重定向次数则抛出反常
if (++followUpCount > MAX_FOLLOW_UPS) {
throw ProtocolException("Too many follow-up requests: $followUpCount")
}
// 回来的request若不为空则从头赋值后持续建议恳求
request = followUp
priorResponse = response
} finally {
call.exitNetworkInterceptorExchange(closeActiveExchange)
}
}
}
...
/**
* 计算出接收[userResponse]时要宣布的HTTP恳求。
* 这将增加身份验证标头、遵从重定向或处理客户端恳求超时。假如后续操作不必要或不适用,则回来null
*/
@Throws(IOException::class)
private fun followUpRequest(userResponse: Response, exchange: Exchange?): Request? {
val route = exchange?.connection?.route()
val responseCode = userResponse.code
val method = userResponse.request.method
when (responseCode) {
HTTP_PROXY_AUTH -> {
// 407反常处理
...
}
HTTP_UNAUTHORIZED -> return client.authenticator.authenticate(route, userResponse)
HTTP_PERM_REDIRECT, HTTP_TEMP_REDIRECT, HTTP_MULT_CHOICE, HTTP_MOVED_PERM, HTTP_MOVED_TEMP, HTTP_SEE_OTHER -> {
// 300、301、302、303、307、308,重定向恳求处理
return buildRedirectRequest(userResponse, method)
}
HTTP_CLIENT_TIMEOUT -> {
// 408反常处理
...
}
HTTP_UNAVAILABLE -> {
// 503反常处理
...
}
HTTP_MISDIRECTED_REQUEST -> {
// 421反常处理
...
}
else -> return null
}
}
/** 构建重定向恳求 */
private fun buildRedirectRequest(userResponse: Response, method: String): Request? {
...
// 大多数重定向不包含恳求正文
val requestBuilder = userResponse.request.newBuilder()
if (HttpMethod.permitsRequestBody(method)) {
val responseCode = userResponse.code
val maintainBody = HttpMethod.redirectsWithBody(method) ||
responseCode == HTTP_PERM_REDIRECT ||
responseCode == HTTP_TEMP_REDIRECT
if (HttpMethod.redirectsToGet(method) && responseCode != HTTP_PERM_REDIRECT && responseCode != HTTP_TEMP_REDIRECT) {
requestBuilder.method("GET", null)
} else {
val requestBody = if (maintainBody) userResponse.request.body else null
requestBuilder.method(method, requestBody)
}
if (!maintainBody) {
requestBuilder.removeHeader("Transfer-Encoding")
requestBuilder.removeHeader("Content-Length")
requestBuilder.removeHeader("Content-Type")
}
}
// 跨主机重定向时,需求删除所有身份验证标头(运用层无法保存它们)
if (!userResponse.request.url.canReuseConnectionFor(url)) {
requestBuilder.removeHeader("Authorization")
}
return requestBuilder.url(url).build()
}
companion object {
/**
* 重试或许重定向的次数
*/
private const val MAX_FOLLOW_UPS = 20
}
}
3.2 BridgeInterceptor
- 桥接拦截器,首要担任恳求和呼应的转换。把用户结构的 request 方针转换成发送到服务器 request方针,并把服务器回来的呼应转换为对用户友爱的呼应。
// BridgeInterceptor.kt
/**
* 从运用程序代码到网络代码的桥接。
* 首要,它依据用户恳求构建一个网络恳求。然后它持续呼叫网络。最终,它依据网络呼应构建用户呼应
*/
class BridgeInterceptor(private val cookieJar: CookieJar) : Interceptor {
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
// 恳求阶段:BridgeInterceptor担任将用户构建的Request恳求转化为能够进行网络访问的恳求。
// 这个进程或许包含一些对恳求头部的处理,例如设置恳求头信息,如Content-Type,Content-Length等
val userRequest = chain.request()
val requestBuilder = userRequest.newBuilder()
val body = userRequest.body
if (body != null) {
val contentType = body.contentType()
if (contentType != null) {
requestBuilder.header("Content-Type", contentType.toString())
}
val contentLength = body.contentLength()
if (contentLength != -1L) {
requestBuilder.header("Content-Length", contentLength.toString())
requestBuilder.removeHeader("Transfer-Encoding")
} else {
requestBuilder.header("Transfer-Encoding", "chunked")
requestBuilder.removeHeader("Content-Length")
}
}
if (userRequest.header("Host") == null) {
requestBuilder.header("Host", userRequest.url.toHostHeader())
}
if (userRequest.header("Connection") == null) {
requestBuilder.header("Connection", "Keep-Alive")
}
// 假如增加了“Accept-Encoding:gzip”的Header,拦截器还担任解压缩传输流
var transparentGzip = false
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
transparentGzip = true
requestBuilder.header("Accept-Encoding", "gzip")
}
val cookies = cookieJar.loadForRequest(userRequest.url)
if (cookies.isNotEmpty()) {
requestBuilder.header("Cookie", cookieHeader(cookies))
}
if (userRequest.header("User-Agent") == null) {
requestBuilder.header("User-Agent", userAgent)
}
// 回来阶段:当网络恳求回来呼应时,BridgeInterceptor会将网络恳求回来的Response转化为用户可用的Response。
// 这个进程或许包含对回来数据进行解析,处理呼应头信息,或许将处理后的呼应回来给用户
val networkResponse = chain.proceed(requestBuilder.build())
cookieJar.receiveHeaders(userRequest.url, networkResponse.headers)
val responseBuilder = networkResponse.newBuilder()
.request(userRequest)
if (transparentGzip &&
"gzip".equals(networkResponse.header("Content-Encoding"), ignoreCase = true) &&
networkResponse.promisesBody()
) {
val responseBody = networkResponse.body
if (responseBody != null) {
val gzipSource = GzipSource(responseBody.source())
val strippedHeaders = networkResponse.headers.newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build()
responseBuilder.headers(strippedHeaders)
val contentType = networkResponse.header("Content-Type")
responseBuilder.body(RealResponseBody(contentType, -1L, gzipSource.buffer()))
}
}
return responseBuilder.build()
}
3.3 CacheInterceptor
- 缓存拦截器,首要
担任缓存的读取与写入
,将 Http 的恳求成果放到到缓存中,以便在下次进行相同的恳求时,直接从缓存中读取成果,进步呼应速度。
// CacheInterceptor.kt
/**
* 首要担任缓存的读取和写入,
* 将 Http 的恳求成果放到到缓存中,以便在下次进行相同的恳求时,直接从缓存中读取成果,进步呼应速度
*/
class CacheInterceptor(internal val cache: Cache?) : Interceptor {
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val call = chain.call()
// 获取候选缓存
val cacheCandidate = cache?.get(chain.request())
val now = System.currentTimeMillis()
// 缓存战略,恳求是运用网络、缓存仍是两者兼用
val strategy = CacheStrategy.Factory(now, chain.request(), cacheCandidate).compute()
val networkRequest = strategy.networkRequest
val cacheResponse = strategy.cacheResponse
cache?.trackResponse(strategy)
val listener = (call as? RealCall)?.eventListener ?: EventListener.NONE
if (cacheCandidate != null && cacheResponse == null) {
// 候选缓存不适用,直接封闭
cacheCandidate.body?.closeQuietly()
}
// 假如咱们被禁止运用网络,而且缓存缺乏,抛出反常504。
if (networkRequest == null && cacheResponse == null) {
return Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(HTTP_GATEWAY_TIMEOUT)
.message("Unsatisfiable Request (only-if-cached)")
.body(EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build().also {
listener.satisfactionFailure(call, it)
}
}
// 假如不需求网络则直接回来缓存即可
if (networkRequest == null) {
// 回来缓存恳求成果
return cacheResponse!!.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build().also {
listener.cacheHit(call, it)
}
}
if (cacheResponse != null) {
listener.cacheConditionalHit(call, cacheResponse)
} else if (cache != null) {
listener.cacheMiss(call)
}
var networkResponse: Response? = null
try {
// 职责链,让下一个拦截器处理
networkResponse = chain.proceed(networkRequest)
} finally {
// If we're crashing on I/O or otherwise, don't leak the cache body.
if (networkResponse == null && cacheCandidate != null) {
cacheCandidate.body?.closeQuietly()
}
}
// 有缓存呼应
if (cacheResponse != null) {
// 服务器回来状态码为304则回来缓存成果
if (networkResponse?.code == HTTP_NOT_MODIFIED) {
val response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers, networkResponse.headers))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis)
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis)
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build()
networkResponse.body!!.close()
// 在兼并标头之后但在剥离Content-Encoding标头之前更新缓存
cache!!.trackConditionalCacheHit()
cache.update(cacheResponse, response)
return response.also {
listener.cacheHit(call, it)
}
} else {
cacheResponse.body?.closeQuietly()
}
}
// 读取网络恳求成果
val response = networkResponse!!.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build()
if (cache != null) {
if (response.promisesBody() && CacheStrategy.isCacheable(response, networkRequest)) {
// 将网络恳求成果参加缓存
val cacheRequest = cache.put(response)
return cacheWritingResponse(cacheRequest, response).also {
if (cacheResponse != null) {
listener.cacheMiss(call)
}
}
}
// 缓存失效时需求铲除
if (HttpMethod.invalidatesCache(networkRequest.method)) {
try {
cache.remove(networkRequest)
} catch (_: IOException) {
}
}
}
// 回来网络恳求成果
return response
}
3.4 ConnectInterceptor
- 衔接拦截器,首要
担任树立衔接,树立 TCP 衔接或许 TLS 衔接
// ConnectInterceptor.kt
/**
* 翻开与方针服务器的衔接,然后转到下一个拦截器。网络或许用于回来的呼应,或许运用条件GET验证缓存的呼应
*/
object ConnectInterceptor : Interceptor {
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val realChain = chain as RealInterceptorChain
// 查找新衔接或池衔接以承载即将到来的恳求和呼应
val exchange = realChain.call.initExchange(chain)
val connectedChain = realChain.copy(exchange = exchange)
// 让下一层拦截器处理,一起将exchange一起传递过去
return connectedChain.proceed(realChain.request)
}
}
- 树立衔接的部分核心代码
// realCall.kt
/** 查找新衔接或池衔接以承载即将到来的恳求和呼应 */
internal fun initExchange(chain: RealInterceptorChain): Exchange {
...
val codec = exchangeFinder.find(client, chain)
val result = Exchange(this, eventListener, exchangeFinder, codec)
return result
}
// ExchangeFinder.kt
fun find(
client: OkHttpClient,
chain: RealInterceptorChain
): ExchangeCodec {
try {
val resultConnection = findHealthyConnection(
connectTimeout = chain.connectTimeoutMillis,
readTimeout = chain.readTimeoutMillis,
writeTimeout = chain.writeTimeoutMillis,
pingIntervalMillis = client.pingIntervalMillis,
connectionRetryEnabled = client.retryOnConnectionFailure,
doExtensiveHealthChecks = chain.request.method != "GET"
)
return resultConnection.newCodec(client, chain)
...
}
// ExchangeFinder.kt
/** 查找可用的链接,假如不可用则一向重复查找,知道找到停止 */
@Throws(IOException::class)
private fun findHealthyConnection(
connectTimeout: Int,
readTimeout: Int,
writeTimeout: Int,
pingIntervalMillis: Int,
connectionRetryEnabled: Boolean,
doExtensiveHealthChecks: Boolean
): RealConnection {
while (true) {
val candidate = findConnection(
connectTimeout = connectTimeout,
readTimeout = readTimeout,
writeTimeout = writeTimeout,
pingIntervalMillis = pingIntervalMillis,
connectionRetryEnabled = connectionRetryEnabled
)
// 确保衔接可用
if (candidate.isHealthy(doExtensiveHealthChecks)) {
return candidate
}
...
}
}
// ExchangeFinder.kt
/** 获取衔接,先是获取现已存在的进行重用,没有从池中取,再没有就创立一个新衔接 */
@Throws(IOException::class)
private fun findConnection(
connectTimeout: Int,
readTimeout: Int,
writeTimeout: Int,
pingIntervalMillis: Int,
connectionRetryEnabled: Boolean
): RealConnection {
...
// 假如衔接还没有被开释则会重用。这儿没有调用connectionAcquired()是因为咱们之前现已获取了
if (call.connection != null) {
check(toClose == null)
return callConnection
}
...
// 能从衔接池拿到衔接直接回来
if (connectionPool.callAcquirePooledConnection(address, call, null, false)) {
val result = call.connection!!
eventListener.connectionAcquired(call, result)
return result
}
// 衔接池中无衔接时,创立新衔接并增加到衔接池
...
val newConnection = RealConnection(connectionPool, route)
call.connectionToCancel = newConnection
try {
// 运用新衔接来进行服务器衔接
newConnection.connect(
connectTimeout,
readTimeout,
writeTimeout,
pingIntervalMillis,
connectionRetryEnabled,
call,
eventListener
)
} finally {
...
synchronized(newConnection) {
// 新衔接增加到衔接池
connectionPool.put(newConnection)
call.acquireConnectionNoEvents(newConnection)
}
eventListener.connectionAcquired(call, newConnection)
return newConnection
}
- 从
exchangeFinder.find
开端到exchangeFinder.findConnection
只做了一件事,便是先测验重用衔接,假如不能重用就从衔接池中取出一个新的衔接,假如无法取出就直接创立一个新的衔接并增加到衔接池中。 - 看看服务器是怎样衔接的,看这行代码
newConnection.connect
// RealConnection.kt
fun connect(
connectTimeout: Int,
readTimeout: Int,
writeTimeout: Int,
pingIntervalMillis: Int,
connectionRetryEnabled: Boolean,
call: Call,
eventListener: EventListener
) {
...
while (true) {
try {
if (route.requiresTunnel()) {
...
} else {
// 经过Socket构建完好HTTP或HTTPS衔接
connectSocket(connectTimeout, readTimeout, call, eventListener)
...
}
// RealConnection.kt
/** 经过Socket来构建完好HTTP或HTTPS衔接 */
@Throws(IOException::class)
private fun connectSocket(
connectTimeout: Int,
readTimeout: Int,
call: Call,
eventListener: EventListener
) {
...
try {
Platform.get().connectSocket(rawSocket, route.socketAddress, connectTimeout)
} catch (e: ConnectException) {
...
try {
// okio的接口,用于输入,相似InputStream
source = rawSocket.source().buffer()
//okio的接口,用于输出,相似OutputStream
sink = rawSocket.sink().buffer()
}
...
}
- 首要是创立了一个
socket
方针然后运用socket
树立衔接,利用okio
的输入输出接口获取输入/输出流
3.5 CallServerInterceptor
- 首要担任网络数据的恳求和呼应,也便是实践的网络I/O操作。将恳求头与恳求体发送给服务器,以及解析服务器回来的response
// CallServerInterceptor.kt
/** 最终一个拦截器,完结对服务器的网络调用 */
class CallServerInterceptor(private val forWebSocket: Boolean) : Interceptor {
@Throws(IOException::class)
override fun intercept(chain: Interceptor.Chain): Response {
val realChain = chain as RealInterceptorChain
val exchange = realChain.exchange!!
val request = realChain.request
val requestBody = request.body
val sentRequestMillis = System.currentTimeMillis()
var invokeStartEvent = true
var responseBuilder: Response.Builder? = null
var sendRequestException: IOException? = null
try {
exchange.writeRequestHeaders(request)
// 假如不是GET/HEAD恳求
if (HttpMethod.permitsRequestBody(request.method) && requestBody != null) {
if ("100-continue".equals(request.header("Expect"), ignoreCase = true)) {
exchange.flushRequest()
responseBuilder = exchange.readResponseHeaders(expectContinue = true)
exchange.responseHeadersStart()
invokeStartEvent = false
}
if (responseBuilder == null) {
if (requestBody.isDuplex()) {
// 预备双工正文,以便运用程序稍后能够发送恳求正文
exchange.flushRequest()
val bufferedRequestBody = exchange.createRequestBody(request, true).buffer()
requestBody.writeTo(bufferedRequestBody)
} else {
val bufferedRequestBody = exchange.createRequestBody(request, false).buffer()
requestBody.writeTo(bufferedRequestBody)
bufferedRequestBody.close()
}
} else {
exchange.noRequestBody()
if (!exchange.connection.isMultiplexed) {
exchange.noNewExchangesOnConnection()
}
}
} else {
exchange.noRequestBody()
}
if (requestBody == null || !requestBody.isDuplex()) {
exchange.finishRequest()
}
} catch (e: IOException) {
if (e is ConnectionShutdownException) {
throw e // No request was sent so there's no response to read.
}
if (!exchange.hasFailure) {
throw e // Don't attempt to read the response; we failed to send the request.
}
sendRequestException = e
}
try {
if (responseBuilder == null) {
responseBuilder = exchange.readResponseHeaders(expectContinue = false)!!
if (invokeStartEvent) {
exchange.responseHeadersStart()
invokeStartEvent = false
}
}
var response = responseBuilder
.request(request)
.handshake(exchange.connection.handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build()
var code = response.code
if (shouldIgnoreAndWaitForRealResponse(code)) {
responseBuilder = exchange.readResponseHeaders(expectContinue = false)!!
if (invokeStartEvent) {
exchange.responseHeadersStart()
}
response = responseBuilder
.request(request)
.handshake(exchange.connection.handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build()
code = response.code
}
exchange.responseHeadersEnd(response)
response = if (forWebSocket && code == 101) {
response.newBuilder()
.body(EMPTY_RESPONSE)
.build()
} else {
response.newBuilder()
.body(exchange.openResponseBody(response))
.build()
}
...
return response
...
}
3.6 拦截器总结
-
client.interceptors
:用户自界说的拦截器,会在所有的拦截器处理之前进行最早的拦截处理,可用于增加一些公共参数,如自界说 header、自界说 log 等等。 -
RetryAndFollowUpIntercept
:重试和重定向拦截器,重试或许重定向的次数不能大于20次,一起它还创立了一个ExchangeFinder
方针用于办理衔接池为后续的衔接做预备 -
BridgeInterceptor
:桥接拦截器,首要担任恳求和呼应的转换。补充恳求头,把用户恳求转换成网络恳求,网络呼应转换成用户能够接收的呼应,一起还需求注意的一点是假如用户手动增加了Accept-Encoding
那就需求处理解压操作 -
CacheInterceptor
:缓存拦截器,首要担任缓存的读取与写入,将 Http 的恳求成果放到到缓存中,以便在下次进行相同的恳求时,直接从缓存中读取成果,进步呼应速度(内部是经过okio
来处理缓存的) -
ConnectInterceptor
:衔接拦截器,担任树立衔接的。最终是经过RealConnection
方针树立socket
衔接的,而且获得了输入输出流为下一步读写做预备,RealConnection
方针的获取时优先复用的,假如无法复用则从衔接池中获取,假如无法获取则创立一个新的衔接并将其放入衔接池中 -
client.networkInterceptors
:用户自界说的网络拦截器(针对特定类型的恳求运用的拦截器) -
CallServerInterceptor
:调用服务器拦截器,首要担任网络数据的恳求和呼应,也便是实践的网络I/O操作。将恳求头与恳求体发送给服务器,以及解析服务器回来的 response
3.6.1 interceptors与networkInterceptors对比
- 两者都是用户自界说的拦截器,前者是在第一个,后者是在倒数第2个
-
interceptors
是运用拦截器,networkInterceptors
是网络拦截器; - 运用拦截器是用于在恳求发送前和网络呼应后的拦截器,只能触发一次。而网络拦截器在产生过错重试或许重定向时能够履行多次,相当于进行了二次恳求;
- 假如CacheInterceptor命中了缓存就不再进行网络恳求了,因此会存在短路网络拦截器的情况;
- 运用拦截器一般用于统计客户端的网络恳求建议情况;网络拦截器中能够获取到最终发送恳求的request也包含重定向的数据,也能够获取真实产生网络恳求的回来的response,然后修正对应的恳求和呼应数据。
- 用法上:
interceptors可用于增加一些公共参数,如自界说 header、自界说 log 等,而networkInterceptors首要针对特定类型的恳求运用的拦截器