本文为稀土技术社区首发签约文章,14天内禁止转载,14天后未获授权禁止转载,侵权必究!
再谈SharedPreferences
对于android开发者们来说,SharedPreferences已经是一个有满足历史的话题了,之所以还在功能优化这个专栏中再次说到,是由于在实践项目中还是会有许多运用到的当地,一起它也有满足的“坑”,比方常见的主进程堵塞,虽然SharedPreferences 供给了异步操作api apply,可是apply办法仍旧有或许造成ANR。
public void apply() {
final long startTime = System.currentTimeMillis();
final MemoryCommitResult mcr = commitToMemory();
final Runnable awaitCommit = new Runnable() {
@Override
public void run() {
try {
mcr.writtenToDiskLatch.await();
} catch (InterruptedException ignored) {
}
if (DEBUG && mcr.wasWritten) {
Log.d(TAG, mFile.getName() + ":" + mcr.memoryStateGeneration
+ " applied after " + (System.currentTimeMillis() - startTime)
+ " ms");
}
}
};
QueuedWork.addFinisher(awaitCommit);
Runnable postWriteRunnable = new Runnable() {
@Override
public void run() {
awaitCommit.run();
QueuedWork.removeFinisher(awaitCommit);
}
};
// 写入行列
SharedPreferencesImpl.this.enqueueDiskWrite(mcr, postWriteRunnable);
// Okay to notify the listeners before it's hit disk
// because the listeners should always get the same
// SharedPreferences instance back, which has the
// changes reflected in memory.
notifyListeners(mcr);
}
咱们可以看到咱们的runnable被写入了行列,而这个行列会在handleStopService() 、handlePauseActivity() 、 handleStopActivity() 的时分会一向等待 apply() 办法将数据保存成功,否则会一向等待,然后堵塞主线程造成 ANR。
@Override
public void handlePauseActivity(ActivityClientRecord r, boolean finished, boolean userLeaving,
int configChanges, PendingTransactionActions pendingActions, String reason) {
if (userLeaving) {
performUserLeavingActivity(r);
}
r.activity.mConfigChangeFlags |= configChanges;
performPauseActivity(r, finished, reason, pendingActions);
// Make sure any pending writes are now committed.
if (r.isPreHoneycomb()) {
// 这儿便是首恶
QueuedWork.waitToFinish();
}
mSomeActivitiesChanged = true;
}
谷歌官方也有解说
虽然QueuedWork在android 8中有了新的优化,可是实践上仍旧有ANR的出现,在低版本的机型上更加出现频频,所以咱们不或许把sp真的躲避掉。
目前业界有许多代替的计划,便是选用MMKV去处理,可是官方并没有选用像mmkv的办法去处理,而是重整旗鼓,在jetpack中引进DataStore去代替旧时代的SharedPreferences。
DataStore
Jetpack DataStore 是一种数据存储处理计划,答应您运用协议缓冲区存储键值对或类型化目标。DataStore 运用 Kotlin 协程和 Flow 以异步、共同的事务办法存储数据。
DataStore 供给两种不同的完成:Preferences DataStore 和 Proto DataStore(基于protocol buffers)。咱们这儿主要以Preferences DataStore作为剖析,一起在kotlin中,datastore采取了flow的良好架构,进行了内部的调度完成,一起也供给了java兼容版本(选用RxJava完成)
运用比方
val Context.dataStore : DataStore<Preferences> by preferencesDataStore(“文件名”)
由于datastore需求依托协程的环境,所以咱们可以有以下办法
读取
CoroutineScope(Dispatchers.Default).launch {
context.dataStore.data.collect {
value = it[booleanPreferencesKey(key)] ?: defValue
}
}
写入
CoroutineScope(Dispatchers.IO).launch {
context.dataStore.edit { settings ->
settings[booleanPreferencesKey(key) ] = value
}
}
其间booleanPreferencesKey代表着存入的value是boolean类型,相同的,假设咱们需求存入的数据类型是String,相应的key便是经过stringPreferencesKey(key名) 创立。一起由于返回的是flow,咱们是需求调用collect这种监听机制去获取数值的改动,假如想要像sp相同选用同步的办法直接获取,官方经过runBlocking进行获取,比方
val exampleData = runBlocking { context.dataStore.data.first() }
DataStore原理
DataStore供给给了咱们十分简洁的api,所以咱们也可以很快速的入门运用,可是其间的原理完成,咱们是要了解的,由于其创立过程十分简略,咱们就从数据更新(context.dataStore.edit)的视点出发,看看DataStore究竟做了什么。
首要咱们看到edit办法
public suspend fun DataStore<Preferences>.edit(
transform: suspend (MutablePreferences) -> Unit
): Preferences {
return this.updateData {
// It's safe to return MutablePreferences since we freeze it in
// PreferencesDataStore.updateData()
it.toMutablePreferences().apply { transform(this) }
}
}
可以看到edit办法是一个suspend的函数,其主要的完成便是依托updateData办法的调用
interface DataStore<T> 中:
public suspend fun updateData(transform: suspend (t: T) -> T): T
咱们剖析到DataStore是有两种完成,咱们要看的便是Preferences DataStore的完成,其完成类是
internal class PreferenceDataStore(private val delegate: DataStore<Preferences>) :
DataStore<Preferences> by delegate {
override suspend fun updateData(transform: suspend (t: Preferences) -> Preferences):
Preferences {
return delegate.updateData {
val transformed = transform(it)
// Freeze the preferences since any future mutations will break DataStore. If a user
// tunnels the value out of DataStore and mutates it, this could be problematic.
// This is a safe cast, since MutablePreferences is the only implementation of
// Preferences.
(transformed as MutablePreferences).freeze()
transformed
}
}
}
可以看到PreferenceDataStore中updateData办法的具体完成其实在delegate中,而这个delegate的创立是在
PreferenceDataStoreFactory中
public fun create(
corruptionHandler: ReplaceFileCorruptionHandler<Preferences>? = null,
migrations: List<DataMigration<Preferences>> = listOf(),
scope: CoroutineScope = CoroutineScope(Dispatchers.IO + SupervisorJob()),
produceFile: () -> File
): DataStore<Preferences> {
val delegate = DataStoreFactory.create(
serializer = PreferencesSerializer,
corruptionHandler = corruptionHandler,
migrations = migrations,
scope = scope
) {
疏忽
}
return PreferenceDataStore(delegate)
}
DataStoreFactory.create办法中:
public fun <T> create(
serializer: Serializer<T>,
corruptionHandler: ReplaceFileCorruptionHandler<T>? = null,
migrations: List<DataMigration<T>> = listOf(),
scope: CoroutineScope = CoroutineScope(Dispatchers.IO + SupervisorJob()),
produceFile: () -> File
): DataStore<T> =
SingleProcessDataStore(
produceFile = produceFile,
serializer = serializer,
corruptionHandler = corruptionHandler ?: NoOpCorruptionHandler(),
initTasksList = listOf(DataMigrationInitializer.getInitializer(migrations)),
scope = scope
)
}
DataStoreFactory.create 创立的其实是一个SingleProcessDataStore的目标,SingleProcessDataStore一起也是承继于DataStore,它便是一切DataStore背面的真实的完成者。而它的updateData办法便是全部疑团处理的钥匙。
override suspend fun updateData(transform: suspend (t: T) -> T): T {
val ack = CompletableDeferred<T>()
val currentDownStreamFlowState = downstreamFlow.value
val updateMsg =
Message.Update(transform, ack, currentDownStreamFlowState, coroutineContext)
actor.offer(updateMsg)
return ack.await()
}
咱们可以看到,update办法中,有一个叫 ack的 CompletableDeferred目标,而CompletableDeferred,是承继于Deferred。咱们到这儿就应该可以猜到了,这个Deferred目标不正是咱们协程中常用的异步调用类嘛!它供给了await操作答应咱们等待异步的成果。 最终封装好的Message被放入actor.offer(updateMsg) 中,actor是消息处理类目标,它的定义如下
internal class SimpleActor<T>(
/**
* The scope in which to consume messages.
*/
private val scope: CoroutineScope,
/**
* Function that will be called when scope is cancelled. Should *not* throw exceptions.
*/
onComplete: (Throwable?) -> Unit,
/**
* Function that will be called for each element when the scope is cancelled. Should *not*
* throw exceptions.
*/
onUndeliveredElement: (T, Throwable?) -> Unit,
/**
* Function that will be called once for each message.
*
* Must *not* throw an exception (other than CancellationException if scope is cancelled).
*/
private val consumeMessage: suspend (T) -> Unit
) {
private val messageQueue = Channel<T>(capacity = UNLIMITED)
咱们看到,咱们一切的消息会被放到一个叫messageQueue的Channel目标中,Channel其实便是一个适用于协程信息通讯的线程安全的行列。
最终咱们回到主题,offer函数干了什么
省掉前面
do {
// We don't want to try to consume a new message unless we are still active.
// If ensureActive throws, the scope is no longer active, so it doesn't
// matter that we have remaining messages.
scope.ensureActive()
consumeMessage(messageQueue.receive())
} while (remainingMessages.decrementAndGet() != 0)
其实便是经过consumeMessage消费了咱们的消息。到这儿咱们再一次回到咱们DataStore中的SimpleActor完成目标
private val actor = SimpleActor<Message<T>>(
scope = scope,
onComplete = {
it?.let {
downstreamFlow.value = Final(it)
}
// We expect it to always be non-null but we will leave the alternative as a no-op
// just in case.
synchronized(activeFilesLock) {
activeFiles.remove(file.absolutePath)
}
},
onUndeliveredElement = { msg, ex ->
if (msg is Message.Update) {
// TODO(rohitsat): should we instead use scope.ensureActive() to get the original
// cancellation cause? Should we instead have something like
// UndeliveredElementException?
msg.ack.completeExceptionally(
ex ?: CancellationException(
"DataStore scope was cancelled before updateData could complete"
)
)
}
}
) {
consumeMessage 实践
msg ->
when (msg) {
is Message.Read -> {
handleRead(msg)
}
is Message.Update -> {
handleUpdate(msg)
}
}
}
可以看到,consumeMessage其实便是以lambada方法展开了,完成的内容也很直观,假如是Message.Update就调用了handleUpdate办法
private suspend fun handleUpdate(update: Message.Update<T>) {
// 这儿便是completeWith调用,也便是回到了外部Deferred的await办法
update.ack.completeWith(
runCatching {
when (val currentState = downstreamFlow.value) {
is Data -> {
// We are already initialized, we just need to perform the update
transformAndWrite(update.transform, update.callerContext)
}
...
最终经过了transformAndWrite调用writeData办法,写入数据(FileOutputStream)
internal suspend fun writeData(newData: T) {
file.createParentDirectories()
val scratchFile = File(file.absolutePath + SCRATCH_SUFFIX)
try {
FileOutputStream(scratchFile).use { stream ->
serializer.writeTo(newData, UncloseableOutputStream(stream))
stream.fd.sync()
// TODO(b/151635324): fsync the directory, otherwise a badly timed crash could
// result in reverting to a previous state.
}
if (!scratchFile.renameTo(file)) {
throw IOException(
"Unable to rename $scratchFile." +
"This likely means that there are multiple instances of DataStore " +
"for this file. Ensure that you are only creating a single instance of " +
"datastore for this file."
)
}
至此,咱们整个过程就彻底剖析完了,读取数据跟写入数据相似,只是最终调用的处理函数不共同罢了(consumeMessage 调用handleRead),一起咱们也剖析出来handleUpdate的update.ack.completeWith让咱们也回到了协程调用完成后的国际。
SharedPreferences大局替换成DataStore
剖析完DataStore,咱们已经有了满足的了解了,那么是时分将咱们的SharedPreferences迁移至DataStore了吧!
旧sp数据迁移
已存在的sp目标数据可以经过以下办法无缝迁移到datastore的国际
dataStore = context.createDataStore( name = preferenceName, migrations = listOf( SharedPreferencesMigration( context, "sp的名称" ) ) )
无侵入替换sp为DataStore
当然,咱们项目中或许会存在许多历史留传的sp运用,此时用手动替换会简略犯错,并且不方便,其次是三方库所用到sp咱们也无法手动更改,那么有没有一种计划可以无需对原有项目改动,就可以迁移到DataStore呢?嗯!咱们要敢想,才敢做!这个时分便是咱们的功能优化系列的老朋友,ASM上台啦!
咱们来剖析一下,怎样把
val sp = this.getSharedPreferences("test",0)
val editor = sp.edit()
editor.putBoolean("testBoolean",true)
editor.apply()
替换成咱们想要的DataStore,不及,咱们先看一下这串代码的字节码
LINENUMBER 24 L2
ALOAD 0
LDC "test"
ICONST_0
INVOKEVIRTUAL com/example/spider/MainActivity.getSharedPreferences (Ljava/lang/String;I)Landroid/content/SharedPreferences;
ASTORE 2
咱们可以看到,咱们的字节码中存在ALOAD ASTORE这种依赖于操作数栈环境的指令,就知道不能简略的完成指令替换,而是选用同类替换的办法去现实,即咱们可以经过承继于SharedPreferences,在自定义SharedPreferences中完成DataStore的操作,严格来说,这个自定义SharedPreferences,其实就相当于一个壳子了。这种替换办法在Android功能优化-线程监控与线程一致也有运用到。
咱们来看一下自定义的SharedPreferences操作,这儿以putBoolean相关操作举比方
class DataPreference(val context: Context,name:String):SharedPreferences {
val Context.dataStore : DataStore<Preferences> by preferencesDataStore(name)
override fun getBoolean(key: String, defValue: Boolean): Boolean {
var value = defValue
runBlocking {
}
runBlocking {
context.dataStore.data.first {
value = it[booleanPreferencesKey(key)] ?: defValue
true
}
}
// CoroutineScope(Dispatchers.Default).launch {
// context.dataStore.data.collect {
//
// value = it[booleanPreferencesKey(key)] ?: defValue
// Log.e("hello","value os $value")
// }
// }
return value
}
override fun edit(): SharedPreferences.Editor {
return DataEditor(context)
}
inner class DataEditor(private val context: Context): SharedPreferences.Editor {
override fun putBoolean(key: String, value: Boolean): SharedPreferences.Editor {
CoroutineScope(Dispatchers.IO).launch {
context.dataStore.edit { settings ->
settings[booleanPreferencesKey(key) ] = value
}
}
return this
}
override fun commit(): Boolean {
// 空完成即可
}
override fun apply() {
// 空完成即可
}
}
}
由于putBoolean中其实就已经把数据存好了,一切咱们的commit/apply都可以以空完成的办法代替。一起咱们也声明一个扩展函数
StoreTest.kt
fun Context.getDataPreferences(name:String,mode:Int): SharedPreferences {
return DataPreference(this,name)
}
字节码部分操作也比较简略,咱们只需求把原本的 INVOKEVIRTUAL com/example/spider/MainActivity.getSharedPreferences (Ljava/lang/String;I)Landroid/content/SharedPreferences; 指令替换成INVOKESTATIC的StoreTestKt扩展函数getDataPreferences调用即可,一起由于承受的是SharedPreferences类型而不是咱们的DataPreference类型,所以需求选用CHECKCAST转换。
static void spToDataStore(
MethodInsnNode node,
ClassNode klass,
MethodNode method
) {
println("init ===> " + node.name+" --"+node.desc + " " + node.owner)
if (node.name.equals("getSharedPreferences")&&node.desc.equals("(Ljava/lang/String;I)Landroid/content/SharedPreferences;")) {
MethodInsnNode methodHookNode = new MethodInsnNode(Opcodes.INVOKESTATIC,
"com/example/spider/StoreTestKt",
"getDataPreferences",
"(Landroid/content/Context;Ljava/lang/String;I)Landroid/content/SharedPreferences;",
false)
TypeInsnNode typeInsnNode = new TypeInsnNode(Opcodes.CHECKCAST, "android/content/SharedPreferences")
InsnList insertNodes = new InsnList()
insertNodes.add(methodHookNode)
insertNodes.add(typeInsnNode)
method.instructions.insertBefore(node, insertNodes)
method.instructions.remove(node)
println("hook ===> " + node.name + " " + node.owner + " " + method.instructions.indexOf(node))
}
}
计划的“不足”
当然,咱们这个计划并不是百分比完美的
editor.apply()
sp.getBoolean
原因是假如选用这种办法apply()后立马取数据,由于咱们替换后putBoolean其实是一个异步操作,而咱们getBoolean是同步操作,所以就有或许没有拿到最新的数据。可是这个运用姿态本身便是一个欠好的运用姿态,一起业界的滴滴开源Booster的sp异步线程commit优化也相同有这个问题。由于put之后立马get不是一个标准写法,所以咱们也不会对此多加干涉。不过对于咱们DataStore替换后来说,也有更加好的处理办法
CoroutineScope(Dispatchers.Default).launch {
context.dataStore.data.collect {
value = it[booleanPreferencesKey(key)] ?: defValue
Log.e("hello","value os $value")
}
}
经过flow的异步特性,咱们完全可以对value进行collect,调用层经过collect进行数据的搜集,就可以做到万无一失啦(虽然也带来了侵入性)
总结
到这儿,咱们又完成了功能优化的一篇,sp迁移至DataStore的后续适配,等笔者有空了会写一个工具库(挖坑),虽然sp是一个十分长远的话题了,可是仍旧值得咱们剖析,一起也希望DataStore可以被真实使用起来,恰当的选用DataStore与MMKV。
DataStore的功率真的不比MMKV差,要结合实践运用场景!不能无脑MMKV,可见GDE 朱凯大佬的这篇 面试黑洞】Android 的键值对存储有没有最优解?