handler源码剖析
1.基本运用
handler:发送和承受音讯
looper:用于轮询音讯行列
MessageQueue:音讯行列用于存储音讯和办理音讯
//UI线程
val handler = object : Handler(Looper.getMainLooper()) {
override fun handleMessage(msg: Message) {
super.handleMessage(msg)
when (msg.obj) {
CODE_UPDATE -> {
//处理音讯
}
}
}
}
Thread {
val message = Message.obtain()
message.what = CODE_UPDATE
//发送音讯
handler.sendMessage(message)
//发送一条延时音讯
handler.sendMessageDelayed(message,200)
}.start()
Thread{
handler.post {
// 在UI线程履行的使命
}
}
1.创立handler目标
2.运用post办法或许sendMessage办法
3.在handler所在的线程,进行音讯处理
两种发送信息的方式,一种是发送Message,一种是post。
别离看下两种方式的源码处理
2.流程解析
2.1 handler创立
//android.os.Handler
public Handler(@NonNull Looper looper) {
this(looper, null, false);
}
public Handler(@NonNull Looper looper, @Nullable Callback callback, boolean async) {
mLooper = looper;
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
class Handler{
final Looper mLooper;
final MessageQueue mQueue;
...
}
可以看到,在handler创立的时分,需要传入一个looper,而mQueue被Looper所持有
2.2 looper创立
在ActivityThread中的main办法中,现已为我们创立了looper
android.app.ActivityThread
public static void main(String[] args) {
... 省掉代码
//初始化looper和MessageQueue
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false, startSeq);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
if (false) {
Looper.myLooper().setMessageLogging(new LogPrinter(Log.DEBUG, "ActivityThread"));
}
... 省掉代码
//轮询
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
Looper.prepareMainLooper()进行了Looper和MessageQueue的创立
android.os.Looper
public static void prepareMainLooper() {
//不行退出
prepare(false);
synchronized (Looper.class) {
//假如looper现已存在,则抛出反常
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
从代码可以看出,主要是经过Looper.prepare办法进行创立looper,先调用sThreadLocal.get()获取Looper,假如Looper现已存在,则抛出反常。假如不存在,则创立Looper而且设置到ThreadLocal中。再来看看ThreadLocal的具体完成
android.os.Looper
public final class Looper {
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
}
java.lang.ThreadLocal
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null){
map.set(this, value);
}else{
createMap(t, value);
}
}
ThreadLocal的作用是为每个线程提供一个独立的变量副本,经过ThreadLocalMap来完成对每个线程的变量副本的存储和获取。获取到当前线程对应的ThreadLocalMap,static final润饰的threadLocal变量作为key,value则是looper实例,进行存储。由于key永远是同一个,再加Looper.prepare会先判别当前线程是否存在looper,所以Looper在每个线程中只会存在一个Looper
2.3 MessageQueue创立
android.os.Looper
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
在looper的构造函数中,创立了MessageQueue,这个时分handler和looper,messagequeue就绑定在一起了。
2.4 handler.sendMessage
android.os.Handler
public final boolean sendMessage(@NonNull Message msg) {
return sendMessageDelayed(msg, 0);
}
public final boolean post(@NonNull Runnable r) {
return sendMessageDelayed(getPostMessage(r), 0);
}
//post 将runnable设置为msg的callback
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
long uptimeMillis) {
msg.target = this;
msg.workSourceUid = ThreadLocalWorkSource.getUid();
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
经过上面的代码可以看出,无论是sendMessage还是post都会走到sendMessageDelayed,在走到sendMessageAtTime办法,uptimeMillis则是一个具体的时刻点,最终走到了enqueueMessage办法,msg.target = this,指向了当前handler。最终由queue.enqueueMessage进行处理。在一开始创立handler的时分,现已看到了mQueue是MessageQueue。接下来看MessageQueue是怎样处理这个音讯的
android.os.MessageQueue
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
//加锁
synchronized (this) {
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
//Looper.myLooper().quit(); 使用退出的时分才会被符号为true
if (mQuitting) {
IllegalStateException e = new IllegalStateException(msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
}
//唤醒
if (needWake) {
nativeWake(mPtr);
}
return true;
}
刺进行列这儿进行了加锁,保证了线程安全。从代码看出这个行列是优先级行列,依照msg的when进行排序。当头节点为null或许头节点的when大于msg的when时,msg作为头节点。假如msg的when大于头节点,轮询将msg刺进到适宜的位置。
2.5 Looper.loop
现已将msg刺进到messagequeue中,接下来看看loop是怎样处理的。
android.os.Looper
public static void loop() {
//获取looper
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
for (;;) {
if (!loopOnce(me, ident, thresholdOverride)) {
return;
}
}
}
}
private static boolean loopOnce(final Looper me,final long ident, final int thresholdOverride) {
//取出行列中的音讯
Message msg = me.mQueue.next(); // might block
if (msg == null) {
return false;
}
...省掉代码
//msg.target就是handler
msg.target.dispatchMessage(msg);
...省掉代码
msg.recycleUnchecked();
return true;
}
android.os.MessageQueue
Message next() {
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
//堵塞
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
//计算休眠的时刻
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// 获取音讯并回来
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// 没有音讯 一向堵塞
nextPollTimeoutMillis = -1;
}
if (mQuitting) {
dispose();
return null;
}
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
pendingIdleHandlerCount = 0;
nextPollTimeoutMillis = 0;
}
}
在循环中,程序不断地从音讯行列中获取音讯。假如成功获取到音讯,程序会判别当前时刻是否小于音讯的触发时刻(msg.when)。假如是,管帐算出下一次轮询超时的时刻(nextPollTimeoutMillis),然后经过调用nativePollOnce办法来进行等候,该办法底层会调用Linux的epoll办法。
假如当前音讯行列中没有任何音讯,程序将会无限等候,直到有新的音讯到达。这个进程会不断重复,保证程序可以及时处理音讯
msg.target是handler,在取出msg后,最终会调用到handler的dispatchMessage办法。接下来又会履行msg.recycleUnchecked()办法。
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = UID_NONE;
workSourceUid = UID_NONE;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
这儿将msg的符号进行置空,释放一切资源,在判别当前行列的msg数量是否小于MAX_POOL_SIZE(50),假如小于则刺进到表头。
2.6 Handler.dispatchMessage
public void dispatchMessage(@NonNull Message msg) {
//post runnable设置msg的callback
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
private static void handleCallback(Message message) {
message.callback.run();
}
假如是post过来的音讯,一开始传入的时分现已将runnable设为msg的callback,这个时分直接履行run函数,否则由handler的callback回调处理。