突破性的多语言代码大模型基CodeShell:北京大学与四川天府银行联合打造,引领AI编程新时代

突破性的多语言代码大模型基CodeShell:引领AI编程新时代

1.CodeShell简介

CodeShell是北京大学常识核算实验室联合四川天府银行AI团队研发的多语言代码大模型基座。它具有70亿参数,经过对五千亿Tokens的练习,并具有8192的上下文窗口长度。CodeShell在威望的代码评价Benchmark(HumanEval与MBPP)上取得了同等规模最好的功能。这个项目为多语言代码处理和了解供给了有力的东西

  • 才能点

    • 强壮的功能:CodelShell在HumanEval和MBPP上达到了7B代码基座大模型的最优功能

    • 完好的系统:除了代码大模型,一起开源IDE(VS Code与JetBrains)插件,形成开源的全栈技能系统

    • 轻量化布置:支撑本地C++布置,供给轻量快速的本地化软件开发帮手解决方案

    • 全面的评测:供给支撑完好项目上下文、覆盖代码生成、代码缺点检测与修正、测试用例生成等常见软件开发活动的多使命评测系统(即将开源)

    • 高效的练习:根据高效的数据管理系统,CodeShell在完全冷发动情况下,只练习了五千亿Token即获得了优异的功能

  • 开源模型

    • CodeShell Base:CodelShell底座模型,具有强壮的代码根底才能。
    • CodeShell Chat:CodelShell对话模型,在代码问答、代码补全等下流使命重功能优异。
    • CodeShell Chat 4bit:CodelShell对话模型4bit量化版别,在确保模型功能的前提下内存消耗更小,速度更快。
    • CodeShell CPP:CodelShell对话模型CPP版别,支撑开发者在没有GPU的个人电脑中运用。留意,CPP版别相同支撑量化操作,用户能够在最小内存为8G的个人电脑中运转CodeShell。

2.作用评价

咱们选取了现在最流行的两个代码评测数据集(HumanEval与MBPP)对模型进行评价,与现在最先进的两个7b代码大模型CodeLllama与Starcoder相比,Codeshell 取得了最优的成果。详细评测成果如下。

使命 CodeShell-7b CodeLlama-7b Starcoder-7b
humaneval 34.32 29.44 27.80
mbpp 38.65 37.60 34.16
multiple-js 33.17 31.30 27.02
multiple-java 30.43 29.24 24.30
multiple-cpp 28.21 27.33 23.04
multiple-swift 24.30 25.32 15.70
multiple-php 30.87 25.96 22.11
multiple-d 8.85 11.60 8.08
multiple-jl 22.08 25.28 22.96
multiple-lua 22.39 30.50 22.92
multiple-r 20.52 18.57 14.29
multiple-rkt 17.20 12.55 10.43
multiple-rs 24.55 25.90 22.82

3.快速开始

3.1环境依赖

- python 3.8 and above
- pytorch 2.0 and above are recommended
- transformers 4.32 and above
- CUDA 11.8 and above are recommended (this is for GPU users, flash-attention users, etc.)

CodeShell系列模型现已上传至 Hugging Face,开发者能够经过Transformers快速调用CodeShell和CodeShell-Chat。

在开始之前,请确保现已正确设置了环境,并安装了必要的代码包,以及满足上一末节的环境要求。你能够经过下列代码快速安装相关依赖。

pip install -r requirements.txt

接下来你能够经过Transformers运用CodeShell。

3.2 Code Generation

开发者能够运用CodeShell快速生成代码,加速开发效率。

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained("WisdomShell/CodeShell-7B")
model = AutoModelForCausalLM.from_pretrained("WisdomShell/CodeShell-7B", trust_remote_code=True, torch_dtype=torch.bfloat16).to(device)
inputs = tokenizer('def merge_sort():', return_tensors='pt').to(device)
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
  • Fill in the Moddle

CodeShell 支撑Fill-in-the-Middle形式,然后更好的支撑软件开发过程。

input_text = "<fim_prefix>def print_hello_world():n    <fim_suffix>n    print('Hello world!')<fim_middle>"
inputs = tokenizer(input_text, return_tensors='pt').to(device)
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
  • 代码问答

CodeShell一起开源了代码帮手模型CodeShell-7B-Chat,开发者能够经过下列代码与模型进行交互。

model = AutoModelForCausalLM.from_pretrained('WisdomShell/CodeShell-7B-Chat', trust_remote_code=True, torch_dtype=torch.bfloat16).to(device)
tokenizer = AutoTokenizer.from_pretrained('WisdomShell/CodeShell-7B-Chat')
history = []
query = '你是谁?'
response = model.chat(query, history, tokenizer)
print(response)
history.append((query, response))
query = '用Python写一个HTTP server'
response = model.chat(query, history, tokenizer)
print(response)
history.append((query, response))

开发者也能够经过VS Code与JetBrains插件与CodeShell-7B-Chat交互,详情请参VSCode插件库房IntelliJ插件库房

  • Model Quantization

CodeShell 支撑4 bit/8 bit量化,4 bit量化后,占用显存大小约6G,用户能够在显存较小的GPU上运用CodeShell。

model = AutoModelForCausalLM.from_pretrained('WisdomShell/CodeShell-7B-Chat-int4', trust_remote_code=True).to(device)
tokenizer = AutoTokenizer.from_pretrained('WisdomShell/CodeShell-7B-Chat-int4')
  • CodeShell in c/c++

由于大部分个人电脑没有GPU,CodeShell供给了C/C++版别的推理支撑,开发者能够根据本地环境进行编译与运用,详见CodeShell C/C++本地化版

3.3 Demo

咱们供给了Web-UI、命令行、API、IDE四种形式的Demo。

3.3.1 Web UI

开发者经过下列命令发动Web服务,服务发动后,能够经过https://127.0.0.1:8000进行拜访。

python demos/web_demo.py

3.3.2 CLI Demo

咱们也供给了命令行交互的Demo版别,开发者能够经过下列命令运转。

python demos/cli_demo.py

3.3.3 API

CodeShell也供给了根据OpenAI API的布置方法。

python demos/openai_api.py

发动后即可经过HTTP请求与CodeShell交互。

curl http://127.0.0.1:8000/v1/chat/completions 
  -H "Content-Type: application/json" 
  -d '{
    "model": "CodeShell-7B-Chat",
    "messages": [
      {
        "role": "user",
        "content": "你好"
      }
    ]
  }'

3.3.4 IDE

CodeShell最终供给了线上IDE,开发者能够经过IDE进行代码补全、代码问答等操作。一起,IDE插件也一起发布,开发者能够自行在本地进行安装运用。插件相关问题欢迎在VSCode插件库房IntelliJ插件库房中评论。

4.模型详情

Code Shell运用GPT-2作为根底架构,选用Grouped-Query Attention、RoPE相对位置编码等技能。

4.1 Hyper-parameter

Hyper-parameter Value
n_layer 42
n_embd 4096
n_inner 16384
n_head 32
num_query_groups 8
seq-length 8192
vocab_size 70144

4.2 数据集

CodeShell根据自己爬取的Github数据、Big Code开源的Stack和StarCoder数据集、以及少数高质量的中英文数据进行练习。在原始数据集的根底上,CodeShell选用根据Minihash对数据去重,根据KenLM以及高质量数据筛选模型对数据进行了过滤与筛选,最终得到高质量的预练习数据集。

4.3 Tokenizer

CodeShell根据Starcoder词表进行了优化,去除了运用频率较低的词语,并添加了部分中文词表,明显提升了中文的压缩率,为Chat版别的练习供给了根底。

Tokenizer Size Chinese English Code Total
Starcoder 49152 1.22 3.47 3.30 2.66
CodeShell 70020 1.50 3.47 3.30 2.95

参阅链接:

* Hugging Face模型链接:[https://huggingface.co/WisdomShell/CodeShell-7B/tree/main](https://huggingface.co/WisdomShell/CodeShell-7B/tree/main)
* [codeshell](https://github.com/WisdomShell/codeshell)
* https://se.pku.edu.cn/kcl/

更多优质内容请重视公号:汀丶人工智能;会供给一些相关的资源和优质文章,免费获取阅览。