题目描绘
这是 LeetCode 上的 2258. 逃离火灾 ,难度为 困难。
Tag : 「多源 BFS」、「二分」、「预处理」
给你一个下标从 0
开端巨细为 m x n
的二维整数数组 grid
,它表明一个网格图。
每个格子为下面 33 个值之一:
-
0
表明草地。 -
1
表明着火的格子。 -
2
表明一座墙,你跟火都不能经过这个格子。
一开端你在最左上角的格子 (0,0)(0, 0) ,你想要抵达最右下角的安全屋格子 (m−1,n−1)(m – 1, n – 1) 。
每一分钟,你能够移动到相邻的草地格子。
每次你移动之后 ,着火的格子会分散到一切不是墙的相邻格子。
请你回来你在初始方位能够逗留的最多分钟数,且逗留完这段时刻后你还能安全抵达安全屋。
假如无法完成,请你回来 −1-1。假如不管你在初始方位逗留多久,你总是能抵达安全屋,请你回来 10910^9 。
留意,假如你抵达安全屋后,火立刻到了安全屋,这视为你能够安全抵达安全屋。
假如两个格子有共同边,那么它们为相邻格子。
示例 1:
输入:grid = [[0,2,0,0,0,0,0],[0,0,0,2,2,1,0],[0,2,0,0,1,2,0],[0,0,2,2,2,0,2],[0,0,0,0,0,0,0]]
输出:3
解说:上图展现了你在初始方位逗留 3 分钟后的景象。
你依然能够安全抵达安全屋。
逗留超过 3 分钟会让你无法安全抵达安全屋。
示例 2:
输入:grid = [[0,0,0,0],[0,1,2,0],[0,2,0,0]]
输出:-1
解说:上图展现了你立刻开端朝安全屋移动的景象。
火会延伸到你能够移动的一切格子,所以无法安全抵达安全屋。
所以回来 -1 。
示例 3:
输入:grid = [[0,0,0],[2,2,0],[1,2,0]]
输出:1000000000
解说:上图展现了初始网格图。
留意,因为火被墙围了起来,所以无论怎么你都能安全抵达安全屋。
所以回来 109 。
提示:
- m=grid.lengthm = grid.length
- n=grid[i].lengthn = grid[i].length
- 2<=m,n<=3002 <= m, n <= 300
- 4<=mn<=21044 <= m times n <= 2 times 10^4
-
grid[i][j]
是0
,1
或许2
。 - grid[0][0]=grid[m−1][n−1]=0grid[0][0] = grid[m – 1][n – 1] = 0
二分 + BFS
火势延伸是一个固定的进程,只要人员移动需求决议计划。
假定人员最晚在 tt 秒后动身,仍能抵达安全屋,阐明人员对逃走道路的拜访,要比火势更快。那么人员在更早的时刻点([0,t−1][0, t – 1] 秒后)动身,必定仍能按照原定道路抵达安全屋(火势对途径的影响不变)。
因而,在以 tt 为切割点的(正整数)数轴上,具有二段性,可运用「二分」求切割点。
假定存在某个断定函数 check
,用于检查人员在 xx 秒后动身能否抵达安全屋,那么可知:
- 当实践推迟动身的秒数,小于等于 tt 秒,必定能安全抵达
- 当实践推迟动身的描绘,超过 tt 秒,必定不能安全抵达
在人员移动道路中,“回头路”是没有意义的,因而人员对每个点的拜访次数最多为一次。一起,不考虑墙的阻拦,火势也最多在不超过棋盘巨细的时刻内彻底延伸。
这辅导咱们最大推迟动身时刻不会超过 nmn times m,可在 [0,nm][0, n times m] 值域内进行二分。
接下来,考虑怎么完成 check
函数,函数入参为推迟动身秒数 tt,回来值为推迟动身后能否抵达安全屋。
首先,关于一般方位,假如火势和人员一起抵达,是不答应的,而安全屋 (n−1,m−1)(n – 1, m – 1) 方位的一起抵达,是答应的。
因而,咱们需求运用两个二维数组 fg
和 pg
别离记录「火势」和「人员」抵达某个方位的最早时刻。
-
创建用于模仿火势延伸的行列
fire
,遍历网格,将火源方位进行入队,更新火源方位 fg[i][j]=1fg[i][j] = 1,表明火势在榜首秒时最早出现在此处; -
运用
BFS
,模仿 tt 秒的火势延伸,火势在这 tt 秒内所延伸到的新方位,均看作为开始火源,即有 fg[i][j]=1fg[i][j] = 1。若履行完 tt 秒后,火势已延伸到人员开始方位 (0,0)(0, 0),那么推迟 tt 秒动身不可行,直接回来
False
; -
创建用于模仿人员移动的行列
people
,将开始方位 (0,0)(0, 0) 进行入队,更新 pg[0][0]=1pg[0][0] = 1。运用
BFS
,按照「先火后人」的方法,同步模仿「火势延伸」和「人员移动」进程。一般方位,只要火势延伸到,那么人将无法移动到此处;安全屋方位,需求判别是否与火势同一时刻抵达。
为了便利,将「火势延伸」和「人员移动」一致成 update
操作,入参包含当前行列 d
,标识位 isFire
,以及移动偏移量 offset
。
在进行 tt 秒的火势延伸时,调用 tt 次的 update(fire, true, 0)
。在火势和人员同步模仿时,别离调用 update(fire, true, 1)
和 update(people, false, 1)
。
运用示例 11 来举个 :
Java 代码:
class Solution {
int[][] dirs = new int[][]{{0,1}, {0,-1}, {1,0}, {-1,0}};
int n, m;
boolean ok;
int[][] g, fg, pg;
public int maximumMinutes(int[][] grid) {
g = grid;
n = g.length; m = g[0].length;
fg = new int[n][m]; pg = new int[n][m];
if (!check(0)) return -1;
int l = 0, r = n * m;
while (l < r) {
int mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return r == m * n ? (int)1e9 : r;
}
boolean check(int t) {
ok = false;
Deque<int[]> frie = new ArrayDeque<>();
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
fg[i][j] = pg[i][j] = 0;
if (g[i][j] == 1) {
fg[i][j] = 1;
frie.addLast(new int[]{i, j});
}
}
}
while(t-- > 0) update(frie, true, 0); // 先履行 t 秒的火势延伸
if (fg[0][0] != 0) return false;
Deque<int[]> people = new ArrayDeque<>();
pg[0][0] = 1;
people.addLast(new int[]{0, 0});
while (!people.isEmpty()) {
// 先火后人, 同步进行
update(frie, true, 1);
update(people, false, 1);
if (ok) return true;
}
return false;
}
void update(Deque<int[]> deque, boolean isFrie, int offset) {
int sz = deque.size();
while (sz-- > 0) {
int[] info = deque.pollFirst();
int x = info[0], y = info[1];
for (int[] dir : dirs) {
int nx = x + dir[0], ny = y + dir[1];
if (nx < 0 || nx >= n || ny < 0 || ny >= m) continue;
if (g[nx][ny] == 2) continue;
if (isFrie) {
if (fg[nx][ny] != 0) continue;
fg[nx][ny] = fg[x][y] + offset;
} else {
if (nx == n - 1 && ny == m - 1 && (fg[nx][ny] == 0 || fg[nx][ny] == pg[x][y] + offset)) ok = true; // 火尚未抵达 或 一起抵达
if (fg[nx][ny] != 0 || pg[nx][ny] != 0) continue;
pg[nx][ny] = pg[x][y] + offset;
}
deque.addLast(new int[]{nx, ny});
}
}
}
}
C++ 代码:
class Solution {
public:
vector<vector<int>> dirs = {{0,1}, {0,-1}, {1,0}, {-1,0}};
int n, m;
bool ok;
vector<vector<int>> g, fg, pg;
int maximumMinutes(vector<vector<int>>& grid) {
g = grid;
n = g.size(); m = g[0].size();
fg = vector<vector<int>>(n, vector<int>(m, 0)), pg = vector<vector<int>>(n, vector<int>(m, 0));
if (!check(0)) return -1;
int l = 0, r = n * m;
while (l < r) {
int mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return r == n * m ? (int)1e9 : r;
}
bool check(int t) {
ok = false;
deque<vector<int>> frie;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
fg[i][j] = pg[i][j] = 0;
if (g[i][j] == 1) {
fg[i][j] = 1;
frie.push_back({i, j});
}
}
}
while (t-- > 0) update(frie, true, 0);
if (fg[0][0] != 0) return false;
deque<vector<int>> people;
pg[0][0] = 1;
people.push_back({0, 0});
while (!people.empty()) {
update(frie, true, 1);
update(people, false, 1);
if (ok) return true;
}
return false;
}
void update(deque<vector<int>>& deque, bool isFrie, int offset) {
int sz = deque.size();
while (sz-- > 0) {
vector<int> info = deque.front();
deque.pop_front();
int x = info[0], y = info[1];
for (vector<int> dir : dirs) {
int nx = x + dir[0], ny = y + dir[1];
if (nx < 0 || nx >= n || ny < 0 || ny >= m) continue;
if (g[nx][ny] == 2) continue;
if (isFrie) {
if (fg[nx][ny] != 0) continue;
fg[nx][ny] = fg[x][y] + offset;
} else {
if (nx == n - 1 && ny == m - 1 && (fg[nx][ny] == 0 || fg[nx][ny] == pg[x][y] + offset)) ok = true;
if (fg[nx][ny] != 0 || pg[nx][ny] != 0) continue;
pg[nx][ny] = pg[x][y] + offset;
}
deque.push_back({nx, ny});
}
}
}
};
Python 代码:
from collections import deque
class Solution:
def maximumMinutes(self, grid: List[List[int]]) -> int:
dirs = [(0,1),(0,-1),(1,0),(-1,0)]
ok = False
g = grid
n, m = len(g), len(g[0])
fg, pg = [[0] * m for _ in range(n)], [[0] * m for _ in range(n)]
def update(d, isFire, offset):
nonlocal ok
sz = len(d)
for _ in range(sz):
x, y = d.popleft()
for di in dirs:
nx, ny = x + di[0], y + di[1]
if nx < 0 or nx >= n or ny < 0 or ny >= m:
continue
if g[nx][ny] == 2:
continue
if isFire:
if fg[nx][ny] != 0:
continue
fg[nx][ny] = fg[x][y] + offset
else:
if nx == n - 1 and ny == m - 1 and (fg[nx][ny] == 0 or fg[nx][ny] == pg[x][y] + offset):
ok = True
if fg[nx][ny] != 0 or pg[nx][ny] != 0:
continue
pg[nx][ny] = pg[x][y] + offset
d.append((nx, ny))
def check(t):
nonlocal ok
ok = False
fire = deque()
for i in range(n):
for j in range(m):
fg[i][j] = pg[i][j] = 0
if g[i][j] == 1:
fg[i][j] = 1
fire.append((i, j))
for _ in range(t):
update(fire, True, 0)
if fg[0][0] != 0:
return False
people = deque()
pg[0][0] = 1
people.append((0, 0))
while people:
update(fire, True, 1)
update(people, False, 1)
if ok:
return True
return False
if not check(0):
return -1
l, r = 0, n * m
while l < r:
mid = l + r + 1 >> 1
if check(mid):
l = mid
else:
r = mid - 1
return int(1e9) if r == n * m else r
TypeScript 代码:
function maximumMinutes(grid: number[][]): number {
const dirs = [[0,1],[0,-1],[1,0],[-1,0]];
const g = grid;
const n = g.length, m = g[0].length;
const fg = Array.from({length: n}, () => Array(m).fill(0)), pg = Array.from({length: n}, () => Array(m).fill(0));
let ok = false;
const update = function(d: number[][], isFire: boolean, offset: number) {
let sz = d.length;
while (sz-- > 0) {
const info = d.shift();
const x = info[0], y = info[1];
for (let di of dirs) {
const nx = x + di[0], ny = y + di[1];
if (nx < 0 || nx >= n || ny < 0 || ny >= m) continue;
if (g[nx][ny] == 2) continue;
if (isFire) {
if (fg[nx][ny] != 0) continue;
fg[nx][ny] = fg[x][y] + offset;
} else {
if (nx == n - 1 && ny == m - 1 && (fg[nx][ny] == 0 || fg[nx][ny] == pg[x][y] + offset)) ok = true;
if (fg[nx][ny] != 0 || pg[nx][ny] != 0) continue;
pg[nx][ny] = pg[x][y] + offset;
}
d.push([nx, ny]);
}
}
}
const check = function(t: number): boolean {
ok = false
const fire = new Array()
for (let i = 0; i < n; i++) {
for (let j = 0; j < m; j++) {
fg[i][j] = pg[i][j] = 0;
if (g[i][j] == 1) {
fg[i][j] = 1;
fire.push([i, j]);
}
}
}
while (t-- > 0) update(fire, true, 0);
if (fg[0][0] != 0) return false;
const people = new Array();
pg[0][0] = 1;
people.push([0, 0]);
while (people.length != 0) {
update(fire, true, 1);
update(people, false, 1);
if (ok) return true;
}
return false;
}
if (!check(0)) return -1;
let l = 0, r = n * m;
while (l < r) {
const mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return r == n * m ? 1e9 : r;
};
- 时刻复杂度:在值域 [0,nm][0, n times m] 范围内进行二分,二分
check
的BFS
完成复杂度为 O(nm)O(n times m)。全体复杂度为 O(nmlognm)O(nm log{nm}) - 空间复杂度:O(nm)O(n times m)
BFS + 分类评论
经过上述解法,咱们发现存在很多重复计算:例如每次仅有确认的“火势延伸”进程,以及每次依据最新开始火势(由推迟动身时刻 tt 所决定)进行的“人员移动”进程,都是不必要的,可经过比较双方抵达时刻来求解。
详细的,仍是用 fg
和 pg
,别离预处理出「火势」和「人员」抵达每个网格的最早时刻。其间火势延伸仅有确认,而人员的预处理是在不考虑火势的情况下进行。
依据 f=fg[n−1][m−1]f = fg[n-1][m-1] 和 p=pg[n−1][m−1]p = pg[n-1][m-1] 进行分情况评论:
-
若 p=0p = 0:人与安全屋不连通,回来 −1-1;
-
若 f=0f = 0:火与安全屋不连通,一起上述条件不满足(p≠0p neq 0),即人与安全屋是联通 ,回来 1e91e9;
-
若 f<pf < p:火和人都能抵达安全屋。即使不考虑人员半途被火影响(人员或许无法按照最佳道路前往安全屋)的情况下,火也比人要更早抵达安全屋,回来 −1-1;
-
若 f⩾pf geqslant p:抱负情况下,人比火更早抵达安全屋,但存在「人火一起抵达」、「人员半途被烧」或「通路被火拦截」等问题,需求进一步分情况评论:
不难发现,因为安全屋的坐落 (n−1,m−1)(n – 1, m – 1),人员只能从 (n−1,m−2)(n – 1, m – 2) 或 (n−2,m−1)(n – 2, m – 1) 两个方位之一抵达安全屋(这两个归于一般方位,不答应人和火一起抵达),因而能够将「对特殊方位安全屋」的评论转为「对一般方位」的评论:
- 若 pg[n−1][m−2]≠0pg[n – 1][m – 2] neq 0,人与该方位联通,且 f−p+pg[n−1][m−2]<fg[n−1][m−2]f – p + pg[n – 1][m – 2] < fg[n – 1][m – 2],人比火更早抵达该方位,回来 f−pf – p;
- 若 pg[n−2][m−1]≠0pg[n – 2][m – 1] neq 0,人与该方位联通,且 f−p+pg[n−2][m−1]<fg[n−2][m−1]f – p + pg[n – 2][m – 1] < fg[n – 2][m – 1],人比火更早抵达该方位,回来 f−pf – p;
- 否则,阐明推迟 f−pf – p 秒动身,唯二的通路会被火提前拦截,需求早一秒动身,回来 f−p−1f – p – 1;
Java 代码:
class Solution {
int[][] dirs = new int[][]{{0,1}, {0,-1}, {1,0}, {-1,0}};
int[][] g;
int n, m;
public int maximumMinutes(int[][] grid) {
g = grid;
n = g.length; m = g[0].length;
int[][] fg = new int[n][m], pg = new int[n][m];
Deque<int[]> fire = new ArrayDeque<>();
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (g[i][j] == 1) {
fg[i][j] = 1;
fire.addLast(new int[]{i, j});
}
}
}
bfs(fire, fg);
Deque<int[]> people = new ArrayDeque<>();
people.addLast(new int[]{0, 0});
pg[0][0] = 1;
bfs(people, pg);
int p = pg[n - 1][m - 1], f = fg[n - 1][m - 1], ans = f - p;
if (p == 0) return -1;
if (f == 0) return (int)1e9;
if (p > f) return -1;
if (pg[n - 1][m - 2] != 0 && ans + pg[n - 1][m - 2] < fg[n - 1][m - 2]) return ans;
if (pg[n - 2][m - 1] != 0 && ans + pg[n - 2][m - 1] < fg[n - 2][m - 1]) return ans;
return ans - 1;
}
void bfs(Deque<int[]> d, int[][] time) {
while (!d.isEmpty()) {
int[] info = d.pollFirst();
int x = info[0], y = info[1];
for (int[] dir : dirs) {
int nx = x + dir[0], ny = y + dir[1];
if (nx < 0 || nx >= n || ny < 0 || ny >= m) continue;
if (g[nx][ny] == 2) continue;
if (time[nx][ny] != 0) continue;
time[nx][ny] = time[x][y] + 1;
d.addLast(new int[]{nx, ny});
}
}
}
}
C++ 代码:
class Solution {
public:
vector<vector<int>> dirs = {{0,1}, {0,-1}, {1,0}, {-1,0}};
vector<vector<int>> g;
int n, m;
int maximumMinutes(vector<vector<int>>& grid) {
g = grid;
n = g.size(); m = g[0].size();
vector<vector<int>> fg = vector<vector<int>>(n, vector<int>(m, 0)), pg = vector<vector<int>>(n, vector<int>(m, 0));
deque<pair<int, int>> fire;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (g[i][j] == 1) {
fg[i][j] = 1;
fire.push_back({i, j});
}
}
}
bfs(fire, fg);
deque<pair<int, int>> people;
people.push_back({0, 0});
pg[0][0] = 1;
bfs(people, pg);
int p = pg[n - 1][m - 1], f = fg[n - 1][m - 1], ans = f - p;
if (p == 0) return -1;
if (f == 0) return (int)1e9;
if (p > f) return -1;
if (pg[n - 1][m - 2] != 0 && ans + pg[n - 1][m - 2] < fg[n - 1][m - 2]) return ans;
if (pg[n - 2][m - 1] != 0 && ans + pg[n - 2][m - 1] < fg[n - 2][m - 1]) return ans;
return ans - 1;
}
void bfs(deque<pair<int, int>>& d, vector<vector<int>>& time) {
while (!d.empty()) {
pair<int, int> info = d.front();
d.pop_front();
int x = info.first, y = info.second;
for (vector<int> dir : dirs) {
int nx = x + dir[0], ny = y + dir[1];
if (nx < 0 || nx >= n || ny < 0 || ny >= m) continue;
if (g[nx][ny] == 2) continue;
if (time[nx][ny] != 0) continue;
time[nx][ny] = time[x][y] + 1;
d.push_back({nx, ny});
}
}
}
};
Python 代码:
from collections import deque
class Solution:
def maximumMinutes(self, grid: List[List[int]]) -> int:
g = grid
n, m = len(g), len(g[0])
dirs = [(0, 1), (0, -1), (1, 0), (-1, 0)]
def bfs(d, tn):
while d:
info = d.popleft()
x, y = info[0], info[1]
for dx, dy in dirs:
nx, ny = x + dx, y + dy
if nx < 0 or nx >= n or ny < 0 or ny >= m:
continue
if g[nx][ny] == 2:
continue
if tn[nx][ny]:
continue
tn[nx][ny] = tn[x][y] + 1
d.append((nx, ny))
fg, pg = [[0] * m for _ in range(n)], [[0] * m for _ in range(n)]
fire = deque()
for i in range(n):
for j in range(m):
if g[i][j] == 1:
fg[i][j] = 1
fire.append((i, j))
bfs(fire, fg)
people = deque()
people.append((0, 0))
pg[0][0] = 1
bfs(people, pg)
p, f = pg[-1][-1], fg[-1][-1]
ans = f - p
if p == 0:
return -1
if f == 0:
return int(1e9)
if p > f:
return -1
if pg[-1][-2] != 0 and ans + pg[-1][-2] < fg[-1][-2]:
return ans
if pg[-2][-1] != 0 and ans + pg[-2][-1] < fg[-2][-1]:
return ans
return ans - 1
TypeScript 代码:
function maximumMinutes(grid: number[][]): number {
const g = grid;
const n = g.length, m = g[0].length;
const dirs = [[0, 1], [0, -1], [1, 0], [-1, 0]];
const bfs = function (d: number[][], time: number[][]): void {
while (d.length > 0) {
const info = d.shift() as number[];
const x = info[0], y = info[1];
for (const dir of dirs) {
const nx = x + dir[0], ny = y + dir[1];
if (nx < 0 || nx >= n || ny < 0 || ny >= m) continue;
if (g[nx][ny] == 2) continue;
if (time[nx][ny] != 0) continue;
time[nx][ny] = time[x][y] + 1;
d.push([nx, ny]);
}
}
}
const fg = Array.from({ length: n }, () => Array(m).fill(0));
const pg = Array.from({ length: n }, () => Array(m).fill(0));
const fire = [];
for (let i = 0; i < n; i++) {
for (let j = 0; j < m; j++) {
if (g[i][j] == 1) {
fg[i][j] = 1;
fire.push([i, j]);
}
}
}
bfs(fire, fg);
const people = [];
people.push([0, 0]);
pg[0][0] = 1;
bfs(people, pg);
const p = pg[n - 1][m - 1], f = fg[n - 1][m - 1], ans = f - p;
if (p == 0) return -1;
if (f == 0) return 1e9;
if (p > f) return -1;
if (pg[n - 1][m - 2] != 0 && ans + pg[n - 1][m - 2] < fg[n - 1][m - 2]) return ans;
if (pg[n - 2][m - 1] != 0 && ans + pg[n - 2][m - 1] < fg[n - 2][m - 1]) return ans;
return ans - 1;
};
- 时刻复杂度:O(nm)O(n times m)
- 空间复杂度:O(nm)O(n times m)
最后
这是咱们「刷穿 LeetCode」系列文章的第 No.2258
篇,系列开端于 2021/01/01,截止于开始日 LeetCode 上共有 1916 道题目,部分是有锁题,咱们将先把一切不带锁的题目刷完。
在这个系列文章里边,除了解说解题思路以外,还会尽或许给出最为简练的代码。假如涉及通解还会相应的代码模板。
为了便利各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour… 。
在仓库地址里,你能够看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。
更多更全更热门的「笔试/面试」相关资料可拜访排版精巧的 合集新基地