ThreadLocal
ThreadLocal(线程变量).每个线程获取与填充都操作当时线程对应的变量副本. 不同线程间的变量副本是阻隔开的.
static ThreadLocal<String> threadLocal = new ThreadLocal<>();
public static void main(String[] args) {
threadLocal.set("main");
new Thread(()->{
threadLocal.set("thread1");
}).start();
new Thread(()->{
threadLocal.set("thread2");
System.out.println("thread2:"+threadLocal.get());
}).start();
System.out.println("main:"+threadLocal.get());
}
控制台:
thread2:thread2
main:main
从功用上来ThreadLocal或许是一个容器,key是线程id,value是线程的具有的目标数据. 假如我规划的话或许ThreadLocal会规划成上述这种.
MyThreadLocal:
public class MyThreadLocal<T>{
Map<Thread, T> local= new HashMap<Thread, T>();
T get(){
Thread thread = Thread.currentThread();
T o = local.get(thread);
return o;
}
void set(T t){
Thread thread = Thread.currentThread();
local.put(thread, t);
}
}
public static void main(String[] args) throws InterruptedException {
MyThreadLocal<String> threadLocalUtil = new MyThreadLocal<>();
threadLocalUtil.set("main");
System.out.println(threadLocalUtil.get());
new Thread(()->{
threadLocalUtil.set("thread2");
System.out.println("thread2:"+threadLocalUtil.get());
}).start();
}
来看看这种完成的缺点:
-
ThreadLocal便是为多线程所规划的,所以一定涉及并发问题.HashMap线程并不是安全的,所以假如这样完成也要用ConcurrentHashMap<Thread, String> map = new ConcurrentHashMap<>();
-
ThreadLocal的思维是每个线程持有自己的副本,不存在竞赛联系. 上面的完成无论是用hashMap,还是ConcurrentHashMap,或者是锁 都会形成资源的竞赛.
-
假如在主线程中new MyThreadLocal();. 只需主线程一向存在,MyThreadLocal引证就一向在,即便使用过MyThreadLocal的子线程现已完毕了 .map容器中子线程持有的内容也不会被GC掉. local目标会越来越大.
点进原码看看真正的ThreadLocal是怎样规划的:
- ThreadLocalMap: ThreadLocalMap是ThreadLocal的静态内部类,承继了WeakReference的一个map结构.(WeakReference:弱引证只需产生的gc 目标就会被收回.详细可以看下blog.csdn.net/javaphpsqlm…)
- threadLocals: ThreadLocal的私有目标,类型是ThreadLocalMap. 数据都存放在各自线程的私有目标的这个map里边,一切称之为数据副本,线程间互相阻隔.
从set办法开端,线程初次调用ThreadLocal的set办法时threadLocals是空的,走到createMap. new了一个ThreadLocalMap.
用ThreadLocal目标set值:
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
获取当时线程的私有目标threadLocals
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
创建一个map 并将值存到这个map中
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
new Entry(firstKey, firstValue)可以看到这个map的key便是ThreadLocal目标自身. value便是需要保存的值 key是ThreadLocal目标自身是由于每个线程可以使用多个ThreadLocal去保存值(
- ThreadLocal threadLocal0 = new ThreadLocal<>();
- ThreadLocal threadLocal1 = new ThreadLocal<>();
- threadLocal0.set(int)
- threadLocal0.set(string)
)
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
table = new Entry[INITIAL_CAPACITY];
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
set办法搞清楚了 get办法也都能想到.便是去thread的私有目标threadLocalMap中通过当时调用的threadLocal目标作为key取值.
整体了解了ThreadLocal咱们再回忆看下完成细节
为什么要承继弱引证WeakReference.
static class ThreadLocalMap {
static class Entry extends WeakReference<ThreadLocal<?>> {
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
那咱们反过来看下强引证会产生什么,咱们体系中或许会持续运行多个线程,体系中的线程又大部分来源于线程池的复用,线程的周期很长.每个线程中都运行如下代码ThreadLocalMap会存放了很多数据.
public void systemOut() {
ThreadLocal<String> threadLocal = new ThreadLocal<>();
threadLocal.set("BIG_DATA");
System.out.println(threadLocal.get());
}
办法执行完毕了 jvm的栈中threadLocal目标现已没了. 可是ThreadLocalMap仍然持有key和”BIG_DATA”的强引证, 一切不会被GC掉.ThreadLocalMap数据就会越来越大
Entry承继了WeakReference便是为了处理这个问题,把key设置成弱引证.一旦threadLocal的强引证消失,下一次废物收回ThreadLocalMap中的key就会被gc掉.注意这里只有key是弱引证. value不是,value不会被gc.
后续get set时会触发一些清除操作,将key为null的value remove掉. 可是这个并不是固定的,在使用ThreadLocal时大家还是要在不需要的时分手动remove掉,尽或许的阻止内存溢出.
从图来看会明晰一点,看下弱引证的作用便是为了当threadLocal为null也便是强引证1不存在的时分.可以吧key1废物收回起来
来考虑个小问题
value不会被gc或许会形成内存溢出, 为什么不参阅key把key、value都搞成弱引证.没有强引证时都给Gc掉
public static void main(String[] args) {
//假定key value都是弱引证
ThreadLocal<String> threadLocal = new ThreadLocal<>();
threadLocal.set("main");
new Thread(()->{
threadLocal.set("thread1");
}).start();
//模仿jvm产生了废物收回
System.gc();
System.out.println("main:"+threadLocal.get());
}
控制台:
main:null
上面的代码假如value也是弱引证的话,threadLocal.get()取出来的便是空的了. 由于main办法没完毕ThreadLocal threadLocal目标的引证还在栈中,key不会被收回. 可是value也便是字符串”main”没强引证指向他了直接被废物收回了!
下面咱们继续看下用于储存的数据结构ThreadLocalMap中的细节
ThreadLocalMap的内部类:Entry
static class ThreadLocalMap {
static class Entry extends WeakReference<ThreadLocal<?>> {
ThreadLocalMap的构造函数
-
new一个初始巨细为Entry16数组
-
核算key的hashCode与数组长度与运算得到下标. threadLocalHashCode里边的内容大致和.hashCode差不多,只不过threadLocalHashCode的散列性更好
-
设置巨细为初始值1
-
设置阀值,调整巨细阈值以在最坏情况下保持2/3的负载系数。
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
table = new Entry[INITIAL_CAPACITY];
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
/**
* Set the resize threshold to maintain at worst a 2/3 load factor.
*/
private void setThreshold(int len) {
threshold = len * 2 / 3;
}
hash算法大概是每次使用AtomicInteger原子性的的增加0x61c8864.可以使生成的哈希值满足涣散
private static final int HASH_INCREMENT = 0x61c88647;
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
ThreadLocal的set办法
- Entry e = tab[i]; e != null;命中了这个条件说明虽然hash满足涣散仍然产生了hash碰撞.
- e = tab[i = nextIndex(i, len)]通过线性寻址法找到下一个空的方位.把数据存进去 e.value = value;
- 线性寻址set和get都会用到.在寻址的过程中会识别到null key的数据,便是前边说到的弱引证.将key为空的元素删除,其他数据向前移动.
private void set(ThreadLocal<?> key, Object value) {
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get();
if (k == key) {
e.value = value;
return;
}
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
线性寻址:当时方位有抵触,就去按顺序依次寻找当时方位+1、+2、+3的地方是否是空的, 假如到了数组的末尾就从0开端直到找到空余方位. 线性寻址是最为简略直接的hash抵触处理方法.其他还有二次寻址、链表、双重散列等.
private static int nextIndex(int i, int len) {
return ((i + 1 < len) ? i + 1 : 0);
}
ThreadLocal没有承继联系,也便是子线程拿不到父线程的副本. InheritableThreadLocal弥补了这个功用
ThreadLocal<String> inheritableThreadLocal = new InheritableThreadLocal<>();
inheritableThreadLocal.set("main");
new Thread(()->{
System.out.println("thread2:"+inheritableThreadLocal.get());
}).start();
控制台输出 main
ThreadLocal<String> inheritableThreadLocal = new InheritableThreadLocal<>();
inheritableThreadLocal.set("main");
new Thread(()->{
//掩盖父线程内容
inheritableThreadLocal.set("thread2");
System.out.println("thread2:"+inheritableThreadLocal.get());
}).start();
控制台输出 thread2
InheritableThreadLocal承继了ThreadLocal 重写了createMap等办法.inheritableThreadLocals取代了ThreadLocal中的目标
void createMap(Thread t, T firstValue) {
t.inheritableThreadLocals = new ThreadLocalMap(this, firstValue);
}
看一眼Thread的构造函数 ,其中有段逻辑是判别当时线程inheritThreadLocals是否有值有的话调用ThreadLocal.createInheritedMap批量仿制曩昔
public Thread(Runnable target) {
init(null, target, "Thread-" + nextThreadNum(), 0);
}
if (inheritThreadLocals && parent.inheritableThreadLocals != null)
this.inheritableThreadLocals =
ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
由于是创建线程时仿制进去的,在子线程new出来之后,父线程向inheritableThreadLocal录入的数据子线程是不会拿到的
ThreadLocal<String> inheritableThreadLocal = new InheritableThreadLocal<>();
new Thread(()->{
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println("thread2:"+inheritableThreadLocal.get());
}).start();
inheritableThreadLocal.set("main");
控制台:
thread2:null
InheritableThreadLocal的使用:
- 子线程需要父线程的登录态信息
- 日志链路id等