持续创作,加速成长!这是我参与「日新计划 6 月更文挑战」的第18天,点击查看活动详情
ShowMeAI日报系列全新升级!覆盖AI人工智能 工具&框架 | 项目&代码 | 博文&分享 | 数据&资源 |github 研究&论文 等方向。点击查看 历史文章列表,在算法的五个特性公众号内订阅话题 #ShowMeAI资讯日报,可接收每腾讯漫画日最新推送。点击 专题合辑&电子月刊 快速浏览各专题全集。
1.工具&框架
工具框架:embedx – 基于 c++ 开发的、腾讯自研的分布式 embedding 训练和推理框架
egit教程mbedx 是基于 c++ 开发的大规模 embedding 训练和推理系统,累计支持算法是指什么公司 12 个业务
、 30 多个团队使用
、上线百余次
。
Git计算机视觉技术的应用Hub: github.com/Tencent/emb…
工具库giti:CeresDB – 蚂蚁集团开源的时序数据库 ,Rust编写
tags: [数据库,时序数据库,Rust]
GitHub: github.com//CeresDB/ce…
工具框架:Sogou C++ Workflow谷歌翻译 – 搜狗公司C++服务器引擎
它支撑搜狗几乎所有后端C++算法工程师在线服务,包括所有搜索服务,云输入法giti轮胎,在线广告等,每日处理超百亿请求。这是一个设计轻盈优雅的企业级程序引擎,可以满足大多数C++后端开发需求。
GitHub: github.com//sogou/work…
工具:fccf – Fast C/C++ Code Finder,用来高效搜索C/C++git教程代码的命令行工具
‘fccf: A command-line tool that quickly searches th腾讯会议app下载rough C/C++ source code in a directory based on a searc腾讯客服h string and prints r算法工程师elevant code snippets that match the query.’ by Pranav
GitHub: github.com/p-算法工程师ranav/fc算法的时间复杂度取决于c…
工具库:Open3DSOT – 开源点云单目标追踪库
‘Open3DSOT – Open source library for Single Object Tracking谷歌play in point clouds.’ by Kangel Zenn
GitHub: github.com/Ghos计算机视觉tish/Op…
2.博文&计算机视觉好找工作吗分享
免费书籍:《 Web性能权威指南 》
tags: [电子书,web]
谷歌公司高性能团队核心成员的权威之作《High Performance Browser Networking》,涵盖Web 开发者技术体系中应该掌握的所有网络及性能优化知识。全书计算机视觉属于人工智能吗以性能优化为主线,从TCP、UDP 和TLS 协议讲起,解释了如何针对这几种协议和基础设施来优化应用。然后深入探讨了无线和移动网络的工作机制。最后,揭示了HTTP 协议的底层细节,同时详细介绍了HTTP 2.0、 XHR、SSE、WebSocket、WebRTC 和DGitataChan算法工程师nel 等现代浏览器新增的具有革命性的新能力。
GitHub: hpbn.co/
技术实战分享:正则表达式实例搜集,通过实例来学习正则表达式。
Link: wangchujiang.com/regexp-exam…
4.数据&资源
教程资源:MongoDB全方位知识图谱
对 MongoDB 比较全面深入的博文介绍。
Link zhuanlan.zhihu.com/p/497736109
资源:Python for《深度学习》(Deep Learning花书)
本项目基于数学推导和产生原理重新描谷歌三件套述了书腾讯漫画中的概念,并用Python (numpy 库为主) 复现了书本内容 ( 源码级代码实现。《深度学习》涉及到的每一个概念,都会去给它详细的描述、原理层面的推导,以及用代码的实现。代码实现不计算机视觉是什么会调用 Tensorflow、PyTorch、MXNet 等任何深度学习框架,甚至包括 sklearn (pdf算法导论 里用到 sklearn 的部分都是用来验证代码无误),一切代算法的有穷性是指码都是从原理层计算机视觉好找工作吗面实现 (Python 的基础库 NumPy),并有详细注释,与代码区上方的原理描述区一致,你可以结合原理和代码一起理解。
GitHub: github.com//MingchaoZh…
5算法的空间复杂度是指.研究&论文
公众号后台回复关键字 日报,免费获取整理好的6月论算法的五个特性文合辑。
论文:Beyond the Imitation Game: Quantify计算机视觉经典任务ing and extrapolat计算机视觉经典任务ing the capabilities of language models
论文标题:Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language mode计算机视觉属于人工智能吗ls
论文时间:9 Jun 2022
所属领域:推理推断,腾讯会议自然语言处理
对应任务:常识推理,文本理解
论文地址:arxiv.org/abs/2206.04…
代码实现:github.com/google/计算机视觉就业前景BIG-…
论文作者:Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb等
论github中文官网网页文简介:BI腾讯体育G-bench focuses on tasks that are b计算机视觉属于人工智能吗elieved to be beyond the capabilities of谷歌play current language models./BIG bench专注于被认为超出当前语言模型能力的任务。
论文摘要:Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially trans腾讯formative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disrupti腾讯先锋ve new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabili计算机视觉经典任务ties and limitations of language models. To address this challenge, we introduce the Beyond the Imitation谷歌商店 Game ben计算机视觉的应用chmark (B算法的五个特性IG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from lin腾讯视频下载guist谷歌playigitlabcs, childhood development, math, common-算法是指什么sense reasoning, bio计算机视觉技术logy, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed t腾讯体育o be beyond the capabilities of current lgitlabanguage models. We evalua算法工程师te the behavior of OpenAI’计算机视觉是什么s GPT modegithub中文官网网页ls, Google-internal dense tra计算机视觉的研究方向n谷歌商店sformer architectures, and Switch-style sp腾讯会议app下载arse transformers on BIG-bench, across model sizes spanning millions t腾讯o hundreds of billions of parameters. In addition, a tea计算机视觉是什么m of human expert raters performed a计算机视觉属于人工智能吗ll tasks in order to provide a strongitig baseline. Findings include: model performance an计算机视觉好找工作吗d calibratio腾讯已停服的手机游戏n both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably si谷歌商店milar across model classes, thoug算法导论h with benefits from sparsity; tasks算法设计与分析 that improve gradually and pr腾讯会议edictably commonly involve a large knowledge or memorization componen算法是指什么t, whereas tasks that exhibit “break算法的空间复杂度是指through” behavior at a critical scal腾讯e often involve腾讯会议 multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguo算法的时间复杂度取决于us context, but this can be improved with prompting.
随着规模的不断扩大,语言模型显示出定量改进和新的定性能力。尽管这些新功能具有潜在的变革性算法的特征影响,但其特征尚不明确。为了为未来谷歌的研究提供信息,为破坏性的新模型能力做好准备,并改善对社会有害的影响,我们必须了解语言模型目前和近期的能力和局限性。为了应对这一挑战,我们引入了超越模仿游戏基准(BIG-bench)。BIG bench目前由204项任务组计算机视觉就业前景成,由132个机构的442名作者贡献。任务主题多种多样计算机视觉好找工作吗,涉及语言学、儿童发展、数学、常识推计算机视觉就业理、生物学、物理学、社会偏见、软件开发等领域的问题Git。BIG bench专注于被认为超出当前语言模型能力的任务。我们评估了OpenAI的GPT模型、Google内部计算机视觉的应用密集Transformer架构和大平台上的开关式稀疏Transformer的行为,模github型大小跨越数百万到数千亿个参腾讯课堂数。此外,一组人类专家评分员完成了所有任务,以提供一个强大的基线。研究结果包括:模型性能和校准都随规模的增加而改善,但在绝对值方面较差(与评分员性能相比);模型类的性能非常相似,尽管稀疏性带来了好处;逐渐提高和可预测的gitlab任务通常涉及大量的知识或记忆成分,而在关键尺度上表现出“突破”行为的任务通常涉及多个步骤或组件,或脆弱的指标;在背景不腾讯明确的环境中,社会偏见通常会随着规模的增加而增加,但这可以通过pro谷歌三件套mpt得到改善。
论文:Dual-Distribution Dis算法crepancy for Anomaly Detection in Chest X-Rays
论文标题:Dual-Distribution Discrepancy for Anomaly Detection in Chest X-Rays
论文时间:8 Jun 2022
所属领域:Methodology
对应任务:Anomaly Detection,异常检测
论腾讯文地址:arxiv.org/abs/2206.03…
代码实现:github.com/caiyu6666/d…
论文作者:Yu Cai, Hao Chen, Xi谷歌翻译n Yang, Yu Zhou, K计算机视觉就业wang-Ting Cheng
论文简介:During training, module A takes腾讯客服 both known normal and unlabeled i谷歌空间mages as inputs, cap谷歌三件套turing anomalous features from unlabeled images in some way, whi算法的时间复杂度取决于le module B models the distribution of only known normal images. / 在训练期间,模块 A 将已知正常和未标记图像作为输入,以某种方式从未标记图像谷歌中捕获异常特征,而模块 B 仅对已知正常图像的分布进行建模。
论文摘要:Chest X-ray (CXR) is the most typical radiological exam for diagnosis of various diseases. Due to the expens腾讯会议app下载ive and time-consuming annotations, detecting an谷歌账号omalies in CXRs in an unsupervised fashion is very prom计算机视觉是什么ising. However, almogit命令st all of the existing methods consider anomaly detection谷歌地图 a计算机视觉是什么s a One-Class Classification (OCC) problem. They model the distribution o谷歌翻译f only known normal images during training and identify the samples not conforming to normal profile as anomalies in the testing phase. A large number of unlabeled images containing anomalies are thus ignored in the training phase, although they are easy to obtain in clingiteeical practice. In this paper, we propose a novel strategy, Dual-distribution Discrepancy for Anomaly Detection (腾讯会议DDAD), utilizing both known normal images and unlabeled images. The proposed method consists of two modules, denoted as A and B. Duringgit命令 training, module A takes both known normal and unlabeled images as inputs, capturing anomalo计算机视觉技术us features from unlabeled images in some way, while module B models the distribution of only kn谷歌playown normal images. Subse计算机视觉quently, the int腾讯会议app下载er-discrepancy be谷歌商店twe腾讯已停服的手机游戏en modules A and B, and intra-discrepancy inside module B are designed as anomaly scores to indicate anomalies. Experiments on three CXR datasets demonstrate that the proposed DDAD achieves consistent, significant gains and outperforms state-of-the-art methods. Code is available at github.com/caiyu6666/D…
胸部 X 线(CXR)是诊断各种疾病的最典型的放射检查。由于注释昂贵且耗时,以无监督的方gitlab式检测 CXR 中的异常是非常有前途的。然而,几乎所有现有的方法都将异常检测视为一类分类(OCC)问题谷歌商店。他们在谷歌安装器训练期间仅对已知正常图像的分布进行建模,并在测试阶段将不符合正常轮廓的样本识别为异常。因此,在训练阶段会忽略大量包含异常的未标记图像,尽管它们在临床实践中很容易获得。在本文中,我们提出了一种新颖的策略,即异常检测的双分布差异 (DDAD),同时利用已知的正常图像和未标记的图像。所提出的方法由两个模块组成,分别表示为 A 和 B。在训练期间,模块 A 将已知的正常和未标记图像作为输入,以某种方式从未标记图像中捕获异常特征,而模块 B 仅对已知正常图像的分布进行建模.随后,将模块 A 和 B 之间的相互差异以及模块 B 内部的内部谷歌三件套差异腾讯地图设计为异常分数以指示异常。对三个 CXR 数据集的实计算机视觉的研究方向验表明,所提出的 DDAD 实现了一致、计算机视觉就业前景显着的收益,并且优于最先进的方法。代码在github.com/caiyu6666/D…
论文:Sparse Fusion Mixture-of-Exper算法的特征ts are Domain Generalizable Learners**
论文标题:Sparse Fusion Mixture-ogiti轮胎f-Experts are Domagiti轮胎in Generalizable Learner谷歌三件套s
论文时间:8 Jun 2022
所属领域:计算机视觉
对应任务:Domain Gene谷歌商店ralization,Object Recognition,领域泛化,物体识别
论文地址:arxiv.org/abs/2206.04…
代码实现:githu腾讯客服b.com/计算机视觉技术的应用luodian/sf-…
论文作者:Bo Li, Jingkang Yang, Jiawei计算机视觉的研究方向 Ren腾讯视频下载, Yezhen Wang, Ziwei Liu
论文简介:To this end, we propose Sparse Fusion Mixture-计算机视觉好找工作吗of-Experts (SF-MoE), which incorporates sparsity and fusi谷歌空间on mechanisms into the MoE framework to keep the model both sparse and predictive. / 为此,我们提出了 Sparse Fusion Mixture-of-Experts (SF-MoE),它将稀疏性和融合机制结合到 MoE 框架中,以保持模型的稀疏性和预测性。
论文摘要:Domain generaliza谷歌浏览器下载tion (DG) aims at learning generalizable modeGitls under distribution shifts to avoid redu谷歌商店ndantly overfitting massive training data. P腾讯地图revious worksgitlab with complex loss desig计算机视觉就业前景n and gradient constraint hav腾讯客服e not yet led to empirical success o腾讯先锋n large-scale be计算机视觉就业前景nchmark计算机视觉技术的应用s. In this work, we谷歌地图 reveal the mixture-of-experts (MoE) model’s generalizability on DG by leveraging to distributively handle multiple aspects of the predic腾讯已停服的手机游戏tive features across domains. To this end, we propose Sparse Fusion Mixture-of-Experts (SF-MoE), which incorporates sparsity and fusion mechanisms into the MoE framework to keep the model both sparse and pr谷歌账号edictive. SF-MoE has two dedicated modules: 1) sparse block and 2) fusion block, which disentangle and aggregate the diverse learned signals of an object, respectively. Extensive experiments demonstrate that SF-MoE is a domain-g谷歌playeneralizable learner on large-scale benchmarks. It out计算机视觉经典任务performs state-of-the-art counterparts by more than 2% across 5 large-scale DG datasets (e.g., Domain算法分析的目的是Net), w谷歌空间ith the same or even lower computational costs. We further reveal the internal me算法的时间复杂度取决于chani谷歌三件套sm of SF-MoE from dis算法的时间复杂度取决于tributed representation pers算法工程师pective (e.g., vgitlabisual attributes). We谷歌安装器 hope this framework腾讯体育 could facilitate future research to push generalizable object r谷歌三件套ecogniti腾讯漫画on to the real world. Code and models are released at github.com/Luodian/SF-…
域泛化(DG)旨在学习分布变化算法工程师下的泛化模型,以避免冗余过度拟合大量训练数据。以前具有复杂损失设计和梯度约束的工作尚未在大规模基准上取得经验上的成功。在这项工作中,我们通过利用分布式处理跨域预测特征的多个方面来揭示专家混合 (腾讯会议app下载MoE) 模型在 DG 上的泛化性。为此,我们提出了 Sparse Fusion Mixture-of谷歌地图-Experts (S计算机视觉技术的应用F-MoE),它将稀疏性和融合机制结合到giti MoE 框架中,以保持模型的稀疏性和预测性。 SF-MoE 有两个专用模块:1)稀疏块和 2)融合github永久回家地址块,它们分别解开和聚合对象的不同学习信号。大量实验表明,SF-MoE 是大规模基准测试中的域泛化学习器。在 5 个大型 DG 数据集(例如 DomainNet)中,它的性能比最先进的同类产品高出 2% 以上,而谷歌空间计算成本相同甚至更低。我们算法是指什么从分布式表示的角度(例如,视觉属性github中文官网网页)进一步揭计算机视觉的研究方向示了 SF-MoE 的内部机制。我们希望这个框架可以促进未来的研究,将可泛化的对象识别推向现实世界。代码谷歌地图和模型发布在 github.com/Luod谷歌空间ian/SF-…
论文:Neuro-Nav: A Library for Neurally-腾讯先锋Plausible Reinforcement Learning**
论文标题:Neuro-Nav: A Library for Neurally-Plausible Reinforcement Learn谷歌空间ing
论文时间:6 Jun 2022
所属领域:强化学习
对应任务:Decision Making,reinfo谷歌rcement-l计算机视觉是什么earning,决策,强化学习
论文地址:arxiv.org/abs/2206.03…
代码实现:github.com/awjuliani/n…
论文作者:Arthur Juliani, Samuel Barnett, Brandon Davis, Margaret S腾讯体育ereno, Ida Momennejad
论文简介:On the other hand, artificial intelligence researchers often struggle to find benchmarks for neurally and biologically plausible representati算法设计与分析on and behavior (e. g., in decision making计算机视觉是什么 or navigation). / 另一方面,人工智能研究人员通常很难找到神经和生物学上合理的表示和行为的基准(例如,在决策或导航中)。
论文摘要:In this work we propose Neu腾讯地图ro-Nav, an open-source library谷歌play for neurally pl谷歌playausible reinforcement lear计算机视觉的研究方向ning (RL). RL is among the most common modeling frameworks for studying decision making, learning, and navigation in biolo计算机视觉的应用gical organisms. In utilizing RL, cognitgitiive scienti算法的时间复杂度取决于s算法是指什么ts often handcraft enviro腾讯先锋nments and agents to meet tGithe needs of their partic腾讯体育ular studies. On the other hand, artificial intelligence researchers often struggle to fin计算机视觉技术d benchmarks for neurally and biologically plausible representation and behavior谷歌地图 (e.g.,算法是指什么 in decision ma算法工程师king or navigation). In orde计算机视觉好找工作吗r to streamline this process across both fields with transpa计算机视觉就业rency and reprod谷歌浏览器ucibility, Neuro-Nav offers a set of standardized environments and腾讯已停服的手机游戏 RL algorithms drawn from canoGitnical behavioral and neural studies in rodents and humans. We demonstrate that the toolkit repligit命令cates relevant findings from a number of studies across both cogithub中文官网网页gnitive sciencegithub and算法的时间复杂度取决于 RL lite谷歌空间ratures. We furthermore describe ways in which the lib算法分析的目的是rary can be extended with novel algorithms (including deep RL) and environments to address future research needs of the field.
在这项工作中,我们提出了 Neuro-Nav,这是一个用于神经似然算法强化学习 (RL) 的开源库。 RL 是研究生计算机视觉就业前景物有机体中算法的五个特性的决策、学习和导航的最常见的建模框架之一。在利用 RL 时,认知科学家经常手工制作环境和代理以满足他们特定研究的需要。另一方面,人工智能研究人员通常很难找到神经和生物学上合理的表示和行为的基准(例如,在决策或导航中)。为了以透明性和可重复性简化这两个领域的giti轮胎过程,Neuro-Nav 提供了一组标准化环境和 RL 算法,这些算法取自啮齿动物和人类的规范行为和神经研究。我们证明该工具包算法分析的目的是复制了认知科学和 RL 文献中大量研究的相关发现。我们进一步描述了使用新算法(包括深度强化学习)和环境扩展库计算机视觉技术的方法,以满足该领域未谷歌商店来的研究需求。
论文:计算机视觉的应用AdaSpeech: Adaptive** Text to Speech for Custom Voice
论文标题:AdaSpeech: Adaptive Text to Speech for Custom Voice
论文时间:ICLR 2021
所属领域:语音
对应任务:语音合成,文本转语音
论文地址:arxiv.org谷歌地图/abs/2103.00…
代码实现:github.com/rishikksh20… , github.com/tuanh123789…
论文作者:Mingjian Chen, Xu Tan, Bohan Li, Yanqing Li u, Tao Qin, Sheng Z谷歌商店haogit教程, Tie-Yan Liu
论文简介:2) To计算机视觉就业前景 better trade off the adaptation parameters a腾讯nd voice quality, we intro计算机视觉是什么duce conditional layer no谷歌商店rmalization in the mel-spectrogram decoder of AdaSpeech, and fine-tune this part in add计算机视觉的研究方向ition to speaker embedding for adaptation. / 2)为了更好地权衡自适应参数和语音质量,我们在 AdaSpeech 的 mel-spectrogram 解码器中引入了条件层归一化,并在说话人嵌入的基础上对这部分进行了微调以进行自适应。
论文摘要:Custom voice, a specific text to speech (TTS) se谷歌浏览器rvice in commercial speech plat计算机视觉就业前景forms, aims to adapt a source TTS model to synthes算法工程师ize personal voice for a target speaker using few speech data. Custom voice presents two unique challenges for TTS adaptation: 1) to support diverse customers, the adaptation model needs to handle diverse acoustic conditions that could be very different from source speech data, and 2) to support a lagithub永久回家地址rge number of customers, the adaptation parameters need to be small enough for each t算法设计与分析arget speaker to reduce memory usage while maintaining high voice qualgitlabity. In this work, we propose AdaSpegiti轮胎ech, an adaptive TTS system for high-quality andgitee efficie谷歌playnt customization of new voices. We design several techniques in AdaSpeech togitlab address the腾讯视频下载 two challenges in custo算法分析的目的是m voice: 1) To handle digiti轮胎fferent acoustic conditions, we use two acoustic encoders to extract an utterance-level vector and a sequence of phoneme-level vectors f腾讯已停服的手机游戏rom the target speech during training; in inference, we extract the utterance-level vector from a reference speech and use an acoustic predictor to predict the phoneme-level vectors. 2) To better trade off the adap谷歌三件套tation parameters and voice quality, we introduce conditional layer normalization in the mel-spectrogram decoder of AdaSpeech, and fine-tune t算法的空间复杂度是指his part in addition to speaker embedding for adaptation. We pre-train the source TTS model on LibriTTS datasets and fine-tu算法的空间复杂度是指ne it on VCTK and LJSpeech datas谷歌三件套ets腾讯客服 (with different acoustic conditions from LibriTTS) with few adaptation data, e.g., 20 sentences, about 1 minute speech. Experiment results show that AdaSpeech achieves算法导论 much b算法的空间复杂度是指etter adap计算机视觉好找工作吗tation quality than baseline methods, wi谷歌安装器th only about 5K specific parameters for eac腾讯会议h speaker, which demonstrates its effectivenes腾讯会议s for custom voice. Audio samples are available at speechresearch.github.io/adaspeech/
自定义语音是商业语音平台中的一种特定文本到语音(TTS)服务,旨在调整源 TTS 模型以使用少量语音数据为目标说话者合成个人语音。自定义语音对 TTS 自适应提出了两个独特的挑战:1) 支持多样化的客户,自适应模型需要计算机视觉经典任务处理可能与源语音数据大不相同的各种声学条件,以及 2) 支持大量客户,自适应参数需要足够小以容纳每个目标扬声器,以减少内存使用量,同时保持高语音质量。在这项工作中,我们提出了 AdaSpeech,这是一种自适应 TTS 系统,用于高质量和高效地定制新语音。我们在 Ada计算机视觉Speech 中设计了几种技术来解决自定义语音中的两个挑战:1)为了处理不同的声学条件,我们使用两个声学编码器在训练期间从目标语音中提取话语级向量和音素级向算法分析的目的是量序列;在推理中,我们从参考语音中提取话语谷歌三件套级向量,并使用声学预测器来预测音素级向量。计算机视觉就业前景 2腾讯课堂)为了更好地权衡自适应参数和语音质量,我们在 AdaSpeech 的 mel-spectrogram 解码器中引入了条件层归谷歌三件套一化,并在说话人嵌入之外算法的有穷性是指对这部分进行了微调以进行自适应腾讯体育。我们在 LibriTTS 数据集上对源 TTS 模型进行预训练,并在 VCTK 和 LJSpeech 数据集(与 L谷歌账号ibriTTS 的声学条件不同)上对其进行微调,适应数据很少,例如 20 个句子,大约 1 分钟的语音。实验结果表计算机视觉就业明,AdaSpeech 实现了比基线方法更好的适应质量,每个说话者只有大约 5K 个计算机视觉就业特定参数,这证明了它对自定义语音的有效性。音频样本可在 speechresegitiarch.git谷歌商店hub.io/adaspeech/
论文:Improved De算法noising Diffusion Probabilistic Models**
论文标题:Improved Denoising Diffusion Probabilistic Models
论文时间:18 Feb 2021
所属领域:计算机视觉
对应任务:Denoising,Image Generation ,去噪,图像生成
论文地址:arxiv.org/abs/2102.09…
代码实现:github.com/openai/impr… , github.com/open-mmla算法是指什么b/… , github.com/luping-liu/… , github.com/vvvm23/ddpm
论文作者:Alex Nichol, Prafulla Dhariwal
论文简介:Denoising diffusi谷歌on proba腾讯会议app下载bilistic models算法导论 (DDPM) are a class of generative models which have recently been shown to pro腾讯duce excellent samples. / 去噪扩散概率模型 (DDPM) 是一类生成模型,最近已被证明可以产生出色的样本。
论文摘要:De计算机视觉的研究方向noising diffusion probabilistic models (DDPM) are a class of generative models which have recently been shown to produce excellent samples. We show that with a few simple modifications, DDPMs can also achi谷歌地图eve competitive log-likelihoods while maintaining high sample quality. Additionally, we find that learning variances of the reverse diffusion process allows sampling with an order of magnitude fewer forward passes with a negligible difference in sample qu腾讯课堂ality, which is important for the practical deployment of these models. We additionally use precision and recall to compare how well DDPMs and GANs cover the target distribution. Finally, we show that计算机视觉 the sample quality angitid likelihood of these models算法的空间复杂度是指 scale smoothlGity with model capacity and training compute, making them easily scalable. We re算法工程师lease our code at github.com/openai/impr…
去噪扩散概率模型(DDPM)是一类生成模型,最近已被证明可以产生出色的样本。我计算机视觉的研究方向们表明,通过一些简单的修改,DDPM 还可以在保持高样本质量的同时实现有竞争力的对数似腾讯然。此外,我们发现反向扩散过程的学习方差允许以更少数量级的正向采样进行采样谷歌翻译,而样本质量的差异可以忽略不计,这对于这些模型的实际部署很重要。我们还使用精度和召回率来比较 DDPM 和 GAN 覆盖目标分布的程度。最后,我们展示了这些模型的样本质量和可能性随着模型容量和训练计算而平滑扩展,使其易于扩展。我们在 githu计算机视觉就业b.com/openai/impr… 发布我们的代码
论文:Toward Fast, Flexible, a算法的空间复杂度是指nd Robust Low-Light Image Enhancem算法工程师ent**
论文标题:Toward Fast, Flexible, and Robust Low-Light Image Enhancem腾讯客服ent
论文时间:CVPR 2022
所属领域:计算机视觉
对应任务:Face Detection,Image Enhancement,L腾讯漫画ow-Lig谷歌安装器ht Image Enhancement,Semantic Segmentation,人脸检测,图像增强,弱光图像增强,语义分割
论文地址:arxiv.org/abs/2204.10…
代码实现:github.com/vis-opt-gro…
论文作者:Long Ma, Tengyu Ma, Risheng Liu, Xin Fan, Zhongxuan Luo
论文简介:Existing low-light image enhancementgitee techniques are mostly not only difficult to deal wGitith both visual quality and computational e计算机视觉技术fficiency but腾讯会议app下载 also commonly invalid in unknown complex scenarios. / 现有的弱光图像谷歌翻译增强技术大多不仅难以处理视觉质量和计算效率,而且在未知的复杂场景中通常无效。
论文摘要:Existing low-light image enhanc腾讯会议app下载ement techniques are mostly not only difficult to deal with both visual quality and computational efficiency but also commonly invalid in unknown complex s计算机视觉cenarios. In this paper, we develop a new Self-Calib谷歌地图rated Illumination (SCI) learning framework for fast, flexible, and robust bri计算机视觉属于人工智能吗ghtening images in real-world low-light scenarios. To be specific, we establish a cascaded illumination learning process with weight sharing to handle tgiteehis t计算机视觉技术的应用ask. Considering the computational burden of the cascaded pattern, we construct the self谷歌浏览器-calibrated module which realizes t算法的时间复杂度取决于he convergence between results of each stage, producing谷歌三件套 the gains that only use the single basic block for inference (y谷歌地图et has not been exploited in previous works), whi谷歌安装器ch drastically diminishes computation cost. We then define the unsuperviGitsed training loss to elevate the model capability that can adapt to general scen腾讯客服es. Further, we make comprehensive explorations to excavate SCI’s inherent properties (lacking in ex谷歌三件套isting works) includgithubing operation-insensitive adaptability (acquiring stable performance under the se计算机视觉是什么ttings of different simple operations) and model-irrelevant generality (can be applied to illumination-based ex算法设计与分析isting w计算机视觉就业前景orks to improve performance). Finally, plenty of experiments and abla算法的特征tion studies fully indicate our superiority in both quality and efficiency. Applications on low-light face detection and nighttime semantic segmentation fully reveal the latent practical values for SCI. The source c腾讯ode is available at github.com/vis-opt-gro…
现有的弱光图像增强技术大多不仅难以处理视觉质量和计算效率,而且在未知的复杂场景中通常无效。在本文中,我们开发了一种新的自校准照明 (SCI) 学习框架,用于在现实世界的弱光场景中实现快速、灵活和稳健的增亮图像。具体来说,我们建立了一个具谷歌商店有权重共享的级联算法导论光照计算机视觉好找工作吗学习过程来处理这个任务。考虑到级联模式的计算负担,我们构建了自校准模块,该模块实现了每个阶段结果之间的收敛,产生仅使用单个基本块进行推理腾讯视频下载的增益(在以算法的五个特性前的工作中尚未开发),这大大算法的空间复杂度是指降低了计算成本。算法分析的目的是然后,我们定义了无监督训练损失,以提升可以适应一般场景的模型能力。此外谷歌空间,我们进行了全面的探索,以挖掘 SCI 的固有属计算机视觉技术的应用性(现有工作中缺乏的),包括操作不敏感的适应性(在不同的简单操作的设置下获得稳定的性能)和模型无关的通用性(可以应用Git于基于光照的现有工作以提高谷歌地图性能谷歌地图)。最后,大量的实验和消融研究充分表明了我们在质量和效率方面的优势。微光人脸检测和夜间语义分割的应用充分揭示了 SCI 的潜在实用价值。源代码可在 github.com/vis-opt-gro… 获得
论文:Point-to-Vox算法的特征el Knowledge Distillation for LiDAR Semantic Segmentation
论文标题:Point-to-Voxel Knowledge Distillation for LiDAR Semantic Segmentation
论文时间:CVPR 2022
所属领域:计算机视觉
对应任务:算法的时间复杂度取决于3D Semantic Segmentation,Knowledge Distillation,算法的特征LIDAR Semantic Seg算法是指什么mentation,Se算法导论mantic Segmentation,3D语义分割,知识蒸馏计算机视觉,LIDAR语义分割,语义分割
论文地址:arxiv.算法工程师org/abs/2206.02…
代码实现:github.com/cardwing/co…
论文作者:Yuenan Hou, Xinge算法 Zhu, Yuexin Ma, Chen Change Loy, Yikang Li
论文腾讯简介:Thi谷歌账号s article addresses the problem of distilling knowledge from a large teacher model to a slim student network for计算机视觉 LiDAR semantic segmentation. / 本文解决了将知识从大型教师模型提取到小型学生网络以进行 LiDAR 语义分割的问题。
论文摘要:This article addresses the problem of distilling k计算机视觉就业nowled计算机视觉属于人工智能吗ge from a large teacher model to a slim student network for LiDAR semantic segmentation.计算机视觉就业 Directly employigithub永久回家地址ng prev计算机视觉ious distillation agiticomfort是什么轮胎pprogithub永久回家地址aches yields inferior results due to the intrgiticomfort是什么轮胎insic challenges of point cloud, i.e., sparsity,腾讯视频下载 randomness and varying density. To tackle the afor算法分析的目的是ementioned计算机视觉的应用 problems, we propose the Point-to-Voxel Knowlegiti轮胎dge Distillation (PVD), which trangiticomfort是什么轮胎sfers the hi腾讯客服dden knowledge from both point level and voxel level. Specifically, we first leverage both the pointwise and voxelwise out算法的时间复杂度取决于put distillation谷歌浏览器 to complement the sparse supervision signals. Then, to better exploit the structural informati计算机视觉经典任务on, we diviGitde the whole point cloud into several supervoxels and design a difficulty-aware sa计算机视觉的研究方向mpling strat算法工程师egy to more frequently sample supervoxels containing less-frequent classes and算法分析的目的是 faraway objec算法导论ts. On these super算法的有穷性是指voxels, we propose inter-point and计算机视觉技术的应用 inter-voxel affin计算机视觉是什么ity distillation, where the si算法的特征milarity information between points and voxels can help the student model better capture the structural information of the surrounding environment. We conduct extensive experiments on tgit教程wo popular LiDAR segmentation benchmarks, i.e., nuScenes and SemanticKITT谷歌playI. On both benchmarks, our PVD consistently outperforms previous distillation approaches by a large margin on three representative backbones, i.e., Cylinder3D, SPVNAS and MinkowskiN腾讯体育et. Notably, on the challenging nuScenes and SemanticKITTI datasets, our method can achieve roughly 7谷歌浏览器5% MACs reduction and 2x speedup on the competitive Cylinder3D model and rank 1s算法分析的目的是t on the SemanticKITTI lead计算机视觉技术erboard a计算机视觉就业前景mong all published alggithub永久回家地址orithms. Our谷歌地图 code is available at github.com/cardwing/Co…
本文解决了将知识从大型教师网络提取到小型学生网络以进行 LiDAR 语义分割的问题。由于点云的内在挑战,即稀疏性、随机性giti轮胎和变化的密度,直接采用以前的蒸馏方法会产生较差的谷歌空间结果。为了解决上述问题,我们提出了点到体素知计算机视觉技术的应用识蒸馏(PVD),它从点级和体素级转移隐藏的知识。具体来说,我们首先利用逐点和逐像素输出蒸馏来补充稀疏的监督信号。然后,为了更好地利用结构信息,腾讯会议我们将整个点云划分为几个超体素,并计算机视觉就业设计一种难度感知采样策略,以更频繁地对包含频率较低的类和远处物体的超体素进行采样。在这些超体素上,我们提出谷歌空间了点间和体素间亲和力蒸馏,其中点算法是指什么和体素之间的相似性信息可以帮助学生网络更好地捕捉周围环境的结构信息。我们对两个流行的 LiDAR 分割基计算机视觉属于人工智能吗准进行了广泛的实验,即 nuScenes 和 SemanticKITTI。在这两个基准上,我们的 PVD 在三个具有代表性的主干网络(即 Cylinder3D、SPVNAS 和 MinkowskiNet)上始终优于以前的蒸馏方法。值得注意的是,在具有挑战性腾讯地图的 nuScenes 和 Sem算法的有穷性是指anticKITTI 数据集上,github我们的方法可以在gitee竞争性 Cyli腾讯已停服的手机游戏nder3D 模型上实现降低大约75% 的MACs和 2 倍的加速,并且在所有已发布算法中的 SemanticKITTI 排行榜上排名第一。我们的代码可在 github.com/cardwing/Cgit命令o…
我们是 ShowMeAI,致力于传播AI优质内容,分享行业解决方案,用知识加速每一次技术成长!gitlab点击查看 历史文章列表,在公众号内订阅话题 #ShowMeAI资讯日报,可接收每日最新推送。点击 专题合辑谷歌商店&电子月刊 快速浏览各专题全集。
- 作者:韩信子@S算法的时间复杂度取决于h计算机视觉技术的应用owMeAI
- 历史文章列表
- 专题合辑&电子月刊谷歌地图
- 声明:版权所有,转载请联系平台与作者并注明出处 – 欢迎回复,拜托点赞,留言推荐中有价值的文章、工具或建议,我们都会尽快回git命令复哒~