这一节咱们总结FM三兄弟FNN/PNN/DeepFM,由远及近,从开端把FM得到的隐向量和权重作为神经网络输入的FNN,到把向量内/外积从预练习直接迁移到神经网络中的PNN,再到参考wide&Deep结构把人工特征交互替换成FM的DeepFM,咱们总算来到了2017年。。。以下代码针对Dense输入感觉更简单了解模型结构,针对spare输入的代码和完好代码 github.com/DSXiangLi/C…

FNN

FNN算是把FM和深度学习最早的测验之一。能够从两个视点去了解FNN:从之前Embedding+MLP的角看,FNN运用FM预练习的隐向量作为第一层能够加快模型收敛。从FM的视点来看,FM局限于二阶特征交互信息,想要学到更高阶的特征交互,在FM基础上叠加全联接层便是FNN。

弥补一下Embedding直接拼接作为输入为啥收敛的这么慢,一个是参数太多一层Embedding就要N*K个参数再加上后边的全联接层,别的便是每次gradient descent只会更新和稀少离散输入里边非0特征对应的Embedding。

模型

先看下FM的公式,FNN提取了以下的W,VW,V来作为神经网络第一层的输入

y(x)=w0+∑i=1Nwixi+∑i=1N∑j=i+1N<vi,vj>xixjy(x) = w_0 + \sum_{i=1}^Nw_i x_i + \sum_{i=1}^N \sum_{j=i+1}^N <v_i,v_j> x_ix_j\\

FNN的模型结构比较简单。输入特征N维, FM隐向量维度是K

  1. 预练习FM模型提取终究的隐向量V=[v1,v2,…,vn]∈RN∗k  vi∈R1∗KV = [v_1,v_2,…,v_n] \in R^{N*k} \,\, v_i \in R^{1*K}和权重w=[w1,w2,…,wn]w∈R1∗Nw= [w_1,w2,…,w_n] w \in R^{1*N}
  2. FNN模型用VVWW来初始化神经网络的第一层.模型输入是由特征离散化后的one-hot矩阵拼接而成(x),每个离散特征(i)的one-hot输入都映射到它的低维embedding上zi=[wi,vi]∗x[starti:endi]z_i = [w_i, v_i] *x[start_i:end_i], 第一层是由[z1,z2,…zn][z_1,z_2,…z_n]
  3. 两个常规的全联接层到终究给出CTR的预测。

模型结构如下

CTR学习笔记&代码实现3-深度ctr模型 FNN->PNN->DeepFM

FNN几个能想到的问题有

  • 端到端的模型,一点都不优雅有没有
  • 终究FNN的体现会必定程度遭到预练习FM体现的约束,神经网络的最大信息量<=FM隐向量和权重所含信息量,当然这不代表FNN会比FM差由于FM对信息的提取只用了内积
  • 从Wide&Deep视点,模型对低阶信息的提炼会比较有限
  • 单纯的全联接层对于进一步提炼隐向量上的信息或许不够高效

代码完成

这儿用了tf.contrib.framework.load_variable去读了之前FM模型的embedding和weight。感觉也能够直接把FM的variable写出来,然后FNN里用params再传进去也是能够的。

@tf_estimator_model
def model_fn(features, labels, mode, params):
    feature_columns= build_features()
    input = tf.feature_column.input_layer(features, feature_columns)
    with tf.variable_scope('init_fm_embedding'):
        # method1: load from checkpoint directly
        embeddings = tf.Variable( tf.contrib.framework.load_variable(
            './checkpoint/FM',
            'fm_interaction/v'
        ) )
        weight = tf.Variable( tf.contrib.framework.load_variable(
            './checkpoint/FM',
            'linear/w'
        ) )
        dense = tf.add(tf.matmul(input, embeddings), tf.matmul(input, weight))
        add_layer_summary('input', dense)
    with tf.variable_scope( 'Dense' ):
        for i, unit in enumerate( params['hidden_units'] ):
            dense = tf.layers.dense( dense, units=unit, activation='relu', name='dense{}'.format( i ) )
            dense = tf.layers.batch_normalization( dense, center=True, scale=True, trainable=True,
                                                   training=(mode == tf.estimator.ModeKeys.TRAIN) )
            dense = tf.layers.dropout( dense, rate=params['dropout_rate'],
                                       training=(mode == tf.estimator.ModeKeys.TRAIN) )
            add_layer_summary( dense.name, dense )
    with tf.variable_scope('output'):
        y = tf.layers.dense(dense, units= 1, name = 'output')
        tf.summary.histogram(y.name, y)
    return y

PNN

PNN的方针在paper最开端就点明晰以比MLPs更有效的方法来挖掘信息。在前一篇咱们就说过MLP理论上能够提炼任意信息,但也由于它太过general导致终究模型能学到形式受数据量的约束会非常有限,PNN借鉴了FM的思路来帮助MLP学到更多特征交互信息。

模型

PNN给出了三种挖掘特征交互信息的方法IPNN选用向量内积,OPNN选用向量外积,concat在一起便是PNN。模型结构如下

  • Input层 输入是N个离散特征one-hot处理后拼接而成的高维稀少矩阵,每个特征映射到相同维度(k)的低维embddding上
  • Product层
    • Z是线性部分,和‘1’相乘也便是直接把N个K维Embedding拼接得到N*K的稠密矩阵copy过来
    • p是特征交互部分
      • IPNN是两两特征做内积(1∗k)∗(k∗1)(1*k)*(k*1)得到的scaler拼接成p,维度是O(N2)O(N^2)
      • OPNN是两两特征做外积(k∗1)∗(1∗k)(k*1)*(1*k)得到K2K^2的矩阵拼接成p,维度是O(K2N2)O(K^2N^2)
      • PNN便是[IPNN,OPNN]

之后跟全衔接层。能够发现去掉全联接层把权重都设为1,把线性部分对接到开端的离散输入那IPNN就退化成了FM。

CTR学习笔记&代码实现3-深度ctr模型 FNN->PNN->DeepFM

Product层的优化

以上IPNN和OPNN的核算都有维度过高,核算复杂度过高的问题,作者进行了相应的优化。

  • OPNN: O(N2K2)→O(K2)O(N^2K^2) \to O(K^2) 原始的OPNN,p中的每个元素都是向量外积的矩阵pi,j∈Rk∗kp_{i,j} \in R^{k*k},优化后作者对一切K*K矩阵进行了sum_pooling,也等同于先对隐向量求和RN∗K→R1∗KR^{N*K} \to R^{1*K}再做外积p=∑i=1N∑j=1NfifjT=f∑(f∑)T  f∑=∑i=1Nfip = \sum_{i=1}^N\sum_{j=1}^N f_if_j^T=f_{\sum}(f_{\sum})^T \, \, f_{\sum}=\sum_{i=1}^Nf_i
  • IPNN: O(N2)→O(N∗K)O(N^2) \to O(N*K) IPNN的优化又一次用到了FM的思想,内积发生的p∈RN2p \in R^{N^2}是对称矩阵,因此在之后全联接层的权重wpw_p也必定是对称矩阵。所以用矩阵分解来进行降维,假定每个神经元对应的权重wpn=nnTwheren∈RNw_p^n = \theta^n{\theta^n}^T \text{where } \theta^n \in R^N wpn⊙p=∑i=1N∑j=1Ninjn<fi,fj>=<∑i=1Nin,∑i=1Nin>w_p^n \odot p = \sum_{i=1}^N\sum_{j=1}^N\theta^n_i\theta^n_j<f_i,f_j>=<\sum_{i=1}^N\delta_i^n,\sum_{i=1}^N\delta_i^n>

PNN的几个或许能够吐槽的地方

  • 和FNN相同对低阶特征的提炼比较有限
  • OPNN的部分假如不优化维度太高,在我测验的练习集上基本是没啥用。优化后这个sum_pooling终究还保留了什么信息,我是没太琢磨明白

代码完成

@tf_estimator_model
def model_fn(features, labels, mode, params):
    dense_feature= build_features()
    dense = tf.feature_column.input_layer(features, dense_feature) # lz linear concat of embedding
    feature_size = len( dense_feature )
    embedding_size = dense_feature[0].variable_shape.as_list()[-1]
    embedding_matrix = tf.reshape( dense, [-1, feature_size, embedding_size] )  # batch * feature_size *emb_size
    with tf.variable_scope('IPNN'):
        # use matrix multiplication to perform inner product of embedding
        inner_product = tf.matmul(embedding_matrix, tf.transpose(embedding_matrix, perm=[0,2,1])) # batch * feature_size * feature_size
        inner_product = tf.reshape(inner_product, [-1, feature_size * feature_size ])# batch * (feature_size * feature_size)
        add_layer_summary(inner_product.name, inner_product)
    with tf.variable_scope('OPNN'):
        outer_collection = []
        for i in range(feature_size):
            for j in range(i+1, feature_size):
                vi = tf.gather(embedding_matrix, indices = i, axis=1, batch_dims=0, name = 'vi') # batch * embedding_size
                vj = tf.gather(embedding_matrix, indices = j, axis=1, batch_dims= 0, name='vj') # batch * embedding_size
                outer_collection.append(tf.reshape(tf.einsum('ai,aj->aij',vi,vj), [-1, embedding_size * embedding_size])) # batch * (emb * emb)
            outer_product = tf.concat(outer_collection, axis=1)
        add_layer_summary( outer_product.name, outer_product )
    with tf.variable_scope('fc1'):
        if params['model_type'] == 'IPNN':
            dense = tf.concat([dense, inner_product], axis=1)
        elif params['model_type'] == 'OPNN':
            dense = tf.concat([dense, outer_product], axis=1)
        elif params['model_type'] == 'PNN':
            dense = tf.concat([dense, inner_product, outer_product], axis=1)
        add_layer_summary( dense.name, dense )
    with tf.variable_scope('Dense'):
        for i, unit in enumerate( params['hidden_units'] ):
            dense = tf.layers.dense( dense, units=unit, activation='relu', name='dense{}'.format( i ) )
            dense = tf.layers.batch_normalization( dense, center=True, scale=True, trainable=True,
                                                   training=(mode == tf.estimator.ModeKeys.TRAIN) )
            dense = tf.layers.dropout( dense, rate=params['dropout_rate'],
                                       training=(mode == tf.estimator.ModeKeys.TRAIN) )
            add_layer_summary( dense.name, dense)
    with tf.variable_scope('output'):
        y = tf.layers.dense(dense, units=1, name = 'output')
        add_layer_summary( 'output', y )
    return y

DeepFM

DeepFM是对Wide&Deep的Wide侧进行了改善。之前的Wide是一个LR,输入是离散特征和交互特征,交互特征会依靠人工特征工程来做cross。DeepFM则是用FM来代替了交互特征的部分,和Wide&Deep比较不再依靠特征工程,一起cross-column的剔除能够降低输入的维度。

和PNN/FNN比较,DeepFM能更多提取到到低阶特征。而且上述这些模型间直接并不互斥,比如把DeepFM的FMLayer同享到Deep部分其实便是IPNN。

模型

Wide部分便是一个FM,输入是N个one-hot的离散特征,每个离散特征对应到等长的低维(k)embedding上,终究输出的便是之前FM模型的output。而且由于这儿不需要像IPNN相同输出隐向量,因此能够运用FM降低复杂度的trick。

CTR学习笔记&代码实现3-深度ctr模型 FNN->PNN->DeepFM

Deep部分和Wide部分同享N*K的Embedding输入层,然后跟两个全联接层

CTR学习笔记&代码实现3-深度ctr模型 FNN->PNN->DeepFM

Deep和Wide联合练习,模型终究的输出是FM部分和Deep部分权重为1的简单加和。联合练习同享Embedding也确保了二阶特征交互学到的Embedding会和高阶信息学到的Embedding的一致性。

代码完成

@tf_estimator_model
def model_fn(features, labels, mode, params):
    dense_feature, sparse_feature = build_features()
    dense = tf.feature_column.input_layer(features, dense_feature)
    sparse = tf.feature_column.input_layer(features, sparse_feature)
    with tf.variable_scope('FM_component'):
        with tf.variable_scope( 'Linear' ):
            linear_output = tf.layers.dense(sparse, units=1)
            add_layer_summary( 'linear_output', linear_output )
        with tf.variable_scope('second_order'):
            # reshape (batch_size, n_feature * emb_size) -> (batch_size, n_feature, emb_size)
            emb_size = dense_feature[0].variable_shape.as_list()[0] # all feature has same emb dimension
            embedding_matrix = tf.reshape(dense, (-1, len(dense_feature), emb_size))
            add_layer_summary( 'embedding_matrix', embedding_matrix )
            # Compared to FM embedding here is flatten(x * v) not v
            sum_square = tf.pow( tf.reduce_sum( embedding_matrix, axis=1 ), 2 )
            square_sum = tf.reduce_sum( tf.pow(embedding_matrix,2), axis=1 )
            fm_output = tf.reduce_sum(tf.subtract( sum_square, square_sum) * 0.5, axis=1, keepdims=True)
            add_layer_summary('fm_output', fm_output)
    with tf.variable_scope('Deep_component'):
        for i, unit in enumerate(params['hidden_units']):
            dense = tf.layers.dense(dense, units = unit, activation ='relu', name = 'dense{}'.format(i))
            dense = tf.layers.batch_normalization(dense, center=True, scale = True, trainable=True,
                                                  training=(mode ==tf.estimator.ModeKeys.TRAIN))
            dense = tf.layers.dropout( dense, rate=params['dropout_rate'], training = (mode==tf.estimator.ModeKeys.TRAIN))
            add_layer_summary( dense.name, dense )
    with tf.variable_scope('output'):
        y = dense + fm_output + linear_output
        add_layer_summary( 'output', y )
    return y

材料

  1. Huifeng Guo et all. “DeepFM: A Factorization-Machine based Neural Network for CTR Prediction,” In IJCAI,2017.
  2. Qu Y, Cai H, Ren K, et al. Product-based neural networks for user response prediction,2016 IEEE
  3. Weinan Zhang, Tianming Du, and Jun Wang. Deep learning over multi-field categorical data – – A case study on user response
  4. daiwk.github.io/posts/dl-dl…
  5. zhuanlan.zhihu.com/p/86181485