数据结构源码
实现类
import java.util.ArrayList;
public class AVLTree<K extends Comparable<K>, V> {
private class Node{
public K key;
public V value;
public Node left, right;
public int height;
public Node(K key, V value){
this.key = key;
this.value = value;
left = null;
right = null;
height = 1;
}
}
private Node root;
private int size;
public AVLTree(){
root = null;
size = 0;
}
public int getSize(){
return size;
}
public boolean isEmpty(){
return size == 0;
}
// 判别二叉树是否是一颗二分搜索树
public boolean isBST() {
ArrayList<K> keys = new ArrayList<>();
inOrder(root, keys);
for (int i = 1; i < keys.size(); i++) {
if (keys.get(i - 1).compareTo(keys.get(i)) > 0) {
return false;
}
}
return true;
}
private void inOrder(Node node, ArrayList<K> keys) {
if (node == null)
return;
inOrder(node.left, keys);
keys.add(node.key);
inOrder(node.right, keys);
}
// 判别二叉树是否是一颗平衡二叉树
public boolean isBalanced() {
return isBalanced(root);
}
// 判别以Node为根的二叉树是否是一颗平衡二叉树,递归算法
private boolean isBalanced(Node node) {
if (node == null) {
return true;
}
int balanceFactor = getBalanceFactor(node);
if (Math.abs(balanceFactor) > 1) {
return false;
}
return isBalanced(node.left) && isBalanced(node.right);
}
private int getHeight(Node node) {
if (node == null) {
return 0;
}
return node.height;
}
// 取得结点node的平衡因子
private int getBalanceFactor(Node node) {
if (node == null)
return 0;
return getHeight(node.left) - getHeight(node.right);
}
/**
* 对结点y进行向右旋转,回来旋转之后新的根结点x
* y x
* / \ / \
* x T4 向右旋转 z y
* / \ - - - - - - - - -> / \ / \
* z T3 T1 T2 T3 T4
* / \
* T1 T2
*
* @param y
* @return
*/
private Node rightRotate(Node y) {
Node x = y.left;
Node T3 = x.right;
// 向右旋转进程
x.right = y;
y.left = T3;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
/**
* 对结点y进行向左旋转操作,回来旋转后的新根结点x
* y x
* / \ / \
* T1 x 向左旋转 (y) y z
* / \ - - - - - - - - -> / \ / \
* T2 z T1 T2 T3 T4
* / \
* T3 T4
* @param y
* @return
*/
private Node leftRotate(Node y) {
Node x = y.right;
Node T2 = x.left;
// 向左旋转进程
x.left = y;
y.right = T2;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
// 向AVL中增加新的元素(key, value)
public void add(K key, V value){
root = add(root, key, value);
}
// 向以node为根的AVL中刺进元素(key, value),递归算法
// 回来刺进新节点后AVL的根
private Node add(Node node, K key, V value){
if(node == null){
size ++;
return new Node(key, value);
}
if(key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if(key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // key.compareTo(node.key) == 0
node.value = value;
// 更新height
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
// 核算平衡因子
int balanceFactor = getBalanceFactor(node);
// 平衡保护
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) {
return rightRotate(node);
}
if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) {
return leftRotate(node);
}
if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}
// 回来以node为根节点的AVL中,key地点的节点
private Node getNode(Node node, K key){
if(node == null)
return null;
if(key.equals(node.key))
return node;
else if(key.compareTo(node.key) < 0)
return getNode(node.left, key);
else // if(key.compareTo(node.key) > 0)
return getNode(node.right, key);
}
public boolean contains(K key){
return getNode(root, key) != null;
}
public V get(K key){
Node node = getNode(root, key);
return node == null ? null : node.value;
}
public void set(K key, V newValue){
Node node = getNode(root, key);
if(node == null)
throw new IllegalArgumentException(key + " doesn't exist!");
node.value = newValue;
}
// 回来以node为根的AVL的最小值地点的节点
private Node minimum(Node node){
if(node.left == null)
return node;
return minimum(node.left);
}
// 从AVL中删去键为key的节点
public V remove(K key){
Node node = getNode(root, key);
if(node != null){
root = remove(root, key);
return node.value;
}
return null;
}
private Node remove(Node node, K key){
if( node == null )
return null;
Node retNode;
if(key.compareTo(node.key) < 0){
node.left = remove(node.left, key);
retNode = node;
}
else if(key.compareTo(node.key) > 0){
node.right = remove(node.right, key);
retNode = node;
}
else{ // key.compareTo(node.key) == 0
// 待删去节点左子树为空的状况
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size --;
retNode = rightNode;
}
else if(node.right == null){ // 待删去节点右子树为空的状况
Node leftNode = node.left;
node.left = null;
size --;
retNode = leftNode;
}
else {
// 待删去节点左右子树均不为空的状况
// 找到比待删去节点大的最小节点, 即待删去节点右子树的最小节点
// 用这个节点代替待删去节点的方位
Node successor = minimum(node.right);
successor.right = remove(node.right, successor.key);
successor.left = node.left;
node.left = node.right = null;
retNode = successor;
}
}
if (retNode == null)
return null;
// 更新height
retNode.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
// 核算平衡因子
int balanceFactor = getBalanceFactor(retNode);
// 平衡保护
if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) {
return rightRotate(retNode);
}
if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) {
return leftRotate(retNode);
}
if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
retNode.left = leftRotate(retNode.left);
return rightRotate(retNode);
}
if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
retNode.right = rightRotate(retNode.right);
return leftRotate(retNode);
}
return retNode;
}
public static void main(String[] args){
}
}
数据结构拆解
保护字段和内部类
private class Node{
public K key;
public V value;
public Node left, right;
public int height;
public Node(K key, V value){
this.key = key;
this.value = value;
left = null;
right = null;
height = 1;
}
}
private Node root;
private int size;
结构函数
public AVLTree(){
root = null;
size = 0;
}
增
// 向AVL中增加新的元素(key, value)
public void add(K key, V value){
root = add(root, key, value);
}
// 向以node为根的AVL中刺进元素(key, value),递归算法
// 回来刺进新节点后AVL的根
private Node add(Node node, K key, V value){
if(node == null){
size ++;
return new Node(key, value);
}
if(key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if(key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // key.compareTo(node.key) == 0
node.value = value;
// 更新height
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
// 核算平衡因子
int balanceFactor = getBalanceFactor(node);
// 平衡保护
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) {
return rightRotate(node);
}
if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) {
return leftRotate(node);
}
if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}
删
// 从AVL中删去键为key的节点
public V remove(K key){
Node node = getNode(root, key);
if(node != null){
root = remove(root, key);
return node.value;
}
return null;
}
private Node remove(Node node, K key){
if( node == null )
return null;
Node retNode;
if(key.compareTo(node.key) < 0){
node.left = remove(node.left, key);
retNode = node;
}
else if(key.compareTo(node.key) > 0){
node.right = remove(node.right, key);
retNode = node;
}
else{ // key.compareTo(node.key) == 0
// 待删去节点左子树为空的状况
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size --;
retNode = rightNode;
}
else if(node.right == null){ // 待删去节点右子树为空的状况
Node leftNode = node.left;
node.left = null;
size --;
retNode = leftNode;
}
else {
// 待删去节点左右子树均不为空的状况
// 找到比待删去节点大的最小节点, 即待删去节点右子树的最小节点
// 用这个节点代替待删去节点的方位
Node successor = minimum(node.right);
successor.right = remove(node.right, successor.key);
successor.left = node.left;
node.left = node.right = null;
retNode = successor;
}
}
if (retNode == null)
return null;
// 更新height
retNode.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
// 核算平衡因子
int balanceFactor = getBalanceFactor(retNode);
// 平衡保护
if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) {
return rightRotate(retNode);
}
if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) {
return leftRotate(retNode);
}
if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
retNode.left = leftRotate(retNode.left);
return rightRotate(retNode);
}
if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
retNode.right = rightRotate(retNode.right);
return leftRotate(retNode);
}
return retNode;
}
改
/**
* 对结点y进行向右旋转,回来旋转之后新的根结点x
* y x
* / \ / \
* x T4 向右旋转 z y
* / \ - - - - - - - - -> / \ / \
* z T3 T1 T2 T3 T4
* / \
* T1 T2
*
* @param y
* @return
*/
private Node rightRotate(Node y) {
Node x = y.left;
Node T3 = x.right;
// 向右旋转进程
x.right = y;
y.left = T3;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
/**
* 对结点y进行向左旋转操作,回来旋转后的新根结点x
* y x
* / \ / \
* T1 x 向左旋转 (y) y z
* / \ - - - - - - - - -> / \ / \
* T2 z T1 T2 T3 T4
* / \
* T3 T4
* @param y
* @return
*/
private Node leftRotate(Node y) {
Node x = y.right;
Node T2 = x.left;
// 向左旋转进程
x.left = y;
y.right = T2;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
public void set(K key, V newValue){
Node node = getNode(root, key);
if(node == null)
throw new IllegalArgumentException(key + " doesn't exist!");
node.value = newValue;
}
查
public int getSize(){
return size;
}
public boolean isEmpty(){
return size == 0;
}
// 判别二叉树是否是一颗二分搜索树
public boolean isBST() {
ArrayList<K> keys = new ArrayList<>();
inOrder(root, keys);
for (int i = 1; i < keys.size(); i++) {
if (keys.get(i - 1).compareTo(keys.get(i)) > 0) {
return false;
}
}
return true;
}
private void inOrder(Node node, ArrayList<K> keys) {
if (node == null)
return;
inOrder(node.left, keys);
keys.add(node.key);
inOrder(node.right, keys);
}
// 判别二叉树是否是一颗平衡二叉树
public boolean isBalanced() {
return isBalanced(root);
}
// 判别以Node为根的二叉树是否是一颗平衡二叉树,递归算法
private boolean isBalanced(Node node) {
if (node == null) {
return true;
}
int balanceFactor = getBalanceFactor(node);
if (Math.abs(balanceFactor) > 1) {
return false;
}
return isBalanced(node.left) && isBalanced(node.right);
}
private int getHeight(Node node) {
if (node == null) {
return 0;
}
return node.height;
}
// 取得结点node的平衡因子
private int getBalanceFactor(Node node) {
if (node == null)
return 0;
return getHeight(node.left) - getHeight(node.right);
}
// 回来以node为根节点的AVL中,key地点的节点
private Node getNode(Node node, K key){
if(node == null)
return null;
if(key.equals(node.key))
return node;
else if(key.compareTo(node.key) < 0)
return getNode(node.left, key);
else // if(key.compareTo(node.key) > 0)
return getNode(node.right, key);
}
public boolean contains(K key){
return getNode(root, key) != null;
}
public V get(K key){
Node node = getNode(root, key);
return node == null ? null : node.value;
}
// 回来以node为根的AVL的最小值地点的节点
private Node minimum(Node node){
if(node.left == null)
return node;
return minimum(node.left);
}