敞开成长之旅!这是我参加「日新计划 12 月更文挑战」的第5天,点击检查活动详情

opencv调用yolov3模型进行深度学习方针检测,以实例进行代码详解

对于yolo v3现已练习好的模型,opencv供给了加载相关文件,进行图片检测的类dnn。 下面临怎么经过opencv调用yolov3模型进行方针检测办法进行详解,付源代码

1、树立相关目录

在练习成果backup文件夹下,找到模型权重文件,拷到win的工程文件夹下 在cfg文件夹下,找到模型装备文件,yolov3-voc.cfg拷到win的工程文件夹下 在data文件夹下,找到voc.names,类别标签文件,拷到win的工程文件夹下

opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解

2代码详解

weightsPath='E:\deep_learn\yolov3_modeFile\yolov3-voc_25000.weights'# 模型权重文件
configPath="E:\deep_learn\yolov3_modeFile\yolov3-voc.cfg"# 模型装备文件
labelsPath = "E:\\deep_learn\\yolov3_modeFile\\voc.names"# 模型类别标签文件

引进模型的相关文件,这儿需求运用yolo v3练习模型的三个文件 (1)模型权重文件 name.weights (2)练习模型时的装备文件 yolov3-voc.cfg(一定和练习时一致,后面会提原因) (3)模型类别的标签文件 voc.names

LABELS = open(labelsPath).read().strip().split("\n")

从voc.names中得到标签的数组LABELS 我的模型辨认的是车和人 voc,names文件内容

opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解
LABELS数组内容
opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解

COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),dtype="uint8")#色彩  随机生成色彩框

依据类别个数随机生成几个色彩 ,用来后期画矩形框 [[ 33 124 191] [211 63 59]]

boxes = []
confidences = []
classIDs = []

声明三个数组 (1)boxes 寄存矩形框信息 (2)confidences 寄存框的置信度 (3)classIDs 寄存框的类别标签 三个数组元素一一对应,即boxes[0]、confidences[0]、classIDs[0]对应一个辨认方针的信息,后期依据该信息在图片中画出辨认方针的矩形框

net = cv2.dnn.readNetFromDarknet(configPath,weightsPath)

加载 网络装备与练习的权重文件 构建网络 注意此处opencv2.7不行 ,没有dnn这个类,最好opencv版本在4.0以上,对应python用3.0以上版本

image = cv2.imread('E:\deep_learn\yolov3_detection_image\R1_WH_ZW_40_80_288.jpg')
(H,W) = image.shape[0:2]

读入待检测的图片,得到图画的高和宽

ln = net.getLayerNames()

得到 YOLO各层的称号,之后从各层称号中找到输出层

opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解
opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解
opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解
可以看到yolo的各层十分多,红框圈的’yolo_94’、’yolo_106’即为输出层,下面就需求经过代码找到这三个输出层,为什么是三个?跟yolo的框架结构有关,yolo有三个输出。对应的我们在练习模型时修正 yolov3-voc.cfg文件,修正的filters、classes也是三处,具体参阅 blog.csdn.net/qq_32761549… 8. 修正./darknet/cfg/yolov3-voc.cfg文件
opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解
下面便是在yolo的所有层称号ln中找出三个输出层,代码如下

out = net.getUnconnectedOutLayers()#得到未衔接层得序号
x = []
for i in out:   # i=[200]
    x.append(ln[i[0]-1])    # i[0]-1    取out中的数字  [200][0]=200  ln(199)= 'yolo_82'
ln=x

yolo的输出层是未衔接层的前一个元素,经过net.getUnconnectedOutLayers()找到未衔接层的序号out= [[200] /n [267] /n [400] ],循环找到所有的输出层,赋值给ln 最终ln = [‘yolo_82’, ‘yolo_94’, ‘yolo_106’] 接下来便是将图画转化为输入的规范格式

blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416),swapRB=True, crop=False)

用需求检测的原始图画image结构一个blob图画,对原图画进行像素归一化1 / 255.0,缩放尺度 (416, 416),,对应练习模型时cfg的文件 交流了R与G通道

opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解
交流R与G通道通道是opencv在翻开图片时交流了一次,此处交流即又换回来了 此刻blob.shape=(1, 3, 416, 416),四维。 可以用numpy里的squeeze()函数把秩为1的维度去掉,然后显现图片出来看看

image_blob = np.squeeze(blob)
cv2.namedWindow('image_blob', cv2.WINDOW_NORMAL)
cv2.imshow('image_blob',np.transpose(image_blob,[1,2,0]))
cv2.waitKey(0)

opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解

net.setInput(blob) #将blob设为输入
layerOutputs = net.forward(ln)  #ln此刻为输出层称号  ,向前传达  得到检测成果

将blob设为输入 ln此刻为输出层称号 ,向前传达 得到检测成果。 此刻layerOutputs即三个输出的检测成果,

opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解
layerOutputs是一个含有三个矩阵的列表变量,三个矩阵对应三个层的检测成果,其间一层的检测成果矩阵如下图
opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解
是个507*7的矩阵,这个矩阵代表着检测成果,其间507便是这层检测到了507个成果(即507个矩形框),其间7便是矩形框的信息,为什么是7呢,这儿解释下,7=5+2,5是矩形框(x,y,w,h,c)2是2个类别别离的置信度(class0、class1). 所以每一行代表一个检测成果。

接下来便是对检测成果进行处理与显现 在检测成果中会有许多每个类的置信度为0的矩形框,要把这些与置信度较低的框去掉

#接下来便是对检测成果进行处理
for output in layerOutputs:  #对三个输出层 循环
    for detection in output:  #对每个输出层中的每个检测框循环
        scores=detection[5:]  #detection=[x,y,h,w,c,class1,class2]
        classID = np.argmax(scores)#np.argmax反应最大值的索引
        confidence = scores[classID]
        if confidence >0.5:#过滤掉那些置信度较小的检测成果
            box = detection[0:4] * np.array([W, H, W, H])
            (centerX, centerY, width, height)= box.astype("int")
            # 边框的左上角
            x = int(centerX - (width / 2))
            y = int(centerY - (height / 2))
            # 更新检测出来的框
            boxes.append([x, y, int(width), int(height)])
            confidences.append(float(confidence))
            classIDs.append(classID)

现在就将网络的检测成果提取了出来,框、置信度、类别。 可以先画一下看下作用

a=0
for box in  boxes:#将每个框画出来
    a=a+1
    (x,y)=(box[0],box[1])#框左上角
    (w,h)=(box[2],box[3])#框宽高
    if classIDs[a-1]==0: #依据类别设定框的色彩
        color = [0,0,255]
    else:
        color = [0, 255, 0]
    cv2.rectangle(image, (x, y), (x + w, y + h), color, 2) #画框
    text = "{}: {:.4f}".format(LABELS[classIDs[a-1]], confidences[a-1])
    cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, color, 1)#写字
cv2.namedWindow('Image', cv2.WINDOW_NORMAL)
cv2.imshow("Image", image)
cv2.waitKey(0)

成果:

opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解
可以看到对于同一方针有几个矩形框,这需求对框进行非极大值抑制处理。 进行非极大值抑制的操作,opencv的dnn有个直接的函数 NMSBoxes(bboxes, scores, score_threshold, nms_threshold, eta=None, top_k=None) bboxes需求操作的各矩形框对应咱程序的boxes scores矩形框对应的置信度对应咱程序的confidences score_threshold置信度的阈值,低于这个阈值的框直接删除 nms_threshold nms的阈值 非极大值的原理没有了解的话,里边的参数欠好设置。 下面简单说下非极大值抑制的原理 1)先对输入检测框按置信度由高到低排序 2)挑选第一个检测框(即最高置信度,记为A)和其它检测框(记为B)进行iou核算 3)如果iou大于nmsThreshold, 那就将B清除去 4)跳转到2)从剩余得框集里边找置信度最大得框和其它框别离核算iou 5)直到所有框都过滤完 NMSBoxes()函数返回值为最终剩余的按置信度由高到低的矩形框的序列号 进行非极大值抑制后,显现部分代码改一部分即可。直接给出代码

idxs=cv2.dnn.NMSBoxes(boxes, confidences, 0.2,0.3)
box_seq = idxs.flatten()#[ 2  9  7 10  6  5  4]
if len(idxs)>0:
    for seq in box_seq:
        (x, y) = (boxes[seq][0], boxes[seq][1])  # 框左上角
        (w, h) = (boxes[seq][2], boxes[seq][3])  # 框宽高
        if classIDs[seq]==0: #依据类别设定框的色彩
            color = [0,0,255]
        else:
            color = [0,255,0]
        cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)  # 画框
        text = "{}: {:.4f}".format(LABELS[classIDs[seq]], confidences[seq])
        cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, color, 1)  # 写字
cv2.namedWindow('Image', cv2.WINDOW_NORMAL)
cv2.imshow("Image", image)
cv2.waitKey(0)

最终的检测成果

opencv调用yolov3模型进行深度学习目标检测,以实例进行代码详解
至此及用opencv加载yolo v3的模型,进行了一次图片的检测。

3、附源代码

#coding:utf-8
import numpy as np
import cv2
import os
weightsPath='E:\deep_learn\yolov3_modeFile\yolov3-voc_25000.weights'# 模型权重文件
configPath="E:\deep_learn\yolov3_modeFile\yolov3-voc.cfg"# 模型装备文件
labelsPath = "E:\\deep_learn\\yolov3_modeFile\\voc.names"# 模型类别标签文件
#初始化一些参数
LABELS = open(labelsPath).read().strip().split("\n")
boxes = []
confidences = []
classIDs = []
#加载 网络装备与练习的权重文件 构建网络
net = cv2.dnn.readNetFromDarknet(configPath,weightsPath)  
#读入待检测的图画
image = cv2.imread('E:\deep_learn\yolov3_detection_image\R1_WH_ZW_40_80_288.jpg')
#得到图画的高和宽
(H,W) = image.shape[0:2]
# 得到 YOLO需求的输出层
ln = net.getLayerNames()
out = net.getUnconnectedOutLayers()#得到未衔接层得序号  [[200] /n [267]  /n [400] ]
x = []
for i in out:   # 1=[200]
    x.append(ln[i[0]-1])    # i[0]-1    取out中的数字  [200][0]=200  ln(199)= 'yolo_82'
ln=x
# ln  =  ['yolo_82', 'yolo_94', 'yolo_106']  得到 YOLO需求的输出层
#从输入图画结构一个blob,然后经过加载的模型,给我们供给边界框和相关概率
#blobFromImage(image, scalefactor=None, size=None, mean=None, swapRB=None, crop=None, ddepth=None)
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416),swapRB=True, crop=False)#结构了一个blob图画,对原图画进行了图画的归一化,缩放了尺度 ,对应练习模型
net.setInput(blob) #将blob设为输入??? 具体作用还不是很清楚
layerOutputs = net.forward(ln)  #ln此刻为输出层称号  ,向前传达  得到检测成果
for output in layerOutputs:  #对三个输出层 循环
    for detection in output:  #对每个输出层中的每个检测框循环
        scores=detection[5:]  #detection=[x,y,h,w,c,class1,class2] scores取第6位至最后
        classID = np.argmax(scores)#np.argmax反应最大值的索引
        confidence = scores[classID]
        if confidence >0.5:#过滤掉那些置信度较小的检测成果
            box = detection[0:4] * np.array([W, H, W, H])
            #print(box)
            (centerX, centerY, width, height)= box.astype("int")
            # 边框的左上角
            x = int(centerX - (width / 2))
            y = int(centerY - (height / 2))
            # 更新检测出来的框
            boxes.append([x, y, int(width), int(height)])
            confidences.append(float(confidence))
            classIDs.append(classID)
idxs=cv2.dnn.NMSBoxes(boxes, confidences, 0.2,0.3)
box_seq = idxs.flatten()#[ 2  9  7 10  6  5  4]
if len(idxs)>0:
    for seq in box_seq:
        (x, y) = (boxes[seq][0], boxes[seq][1])  # 框左上角
        (w, h) = (boxes[seq][2], boxes[seq][3])  # 框宽高
        if classIDs[seq]==0: #依据类别设定框的色彩
            color = [0,0,255]
        else:
            color = [0,255,0]
        cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)  # 画框
        text = "{}: {:.4f}".format(LABELS[classIDs[seq]], confidences[seq])
        cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, color, 1)  # 写字
cv2.namedWindow('Image', cv2.WINDOW_NORMAL)
cv2.imshow("Image", image)
cv2.waitKey(0)