分类: 人工智能

  • Numpy 中如何矩阵的特征对排序

    Numpy 中如何矩阵的特征对排序

    hljs-number”>1<小摆放。对应对 ss="hljs-number--------+ + + er">0.45 1 2 Thi 0.470, 0.597,>

    但这, ])
    b = np.ar[0.87lass=”6hu-768-mt=”470″ src=”ht=”6hu-4140-mypl-1056-mypl” dat” data-mark=”6h”hljs-number”>0an class=”6hu-1r”>0.926小到大排s-number”>4V ( 粗心如下

    a m index
    | |
    se>P : U &er”>2, <"6hu">e = m – B index &

    成果

    37],
    [ , 3m ! ? 3ta-mark=”6hu”>B

    , 2, j n g d span>, /span>ray([0., -0.263, -0.11, 0.042,aj z, 0.>, T x ; t,
    0.878],ass="hljs-numbek="6hu">@ $ { 0的实现对特征值 们能够对待排序 np.ar{"hljs-number">0 a 2 E -de>

    完, 0.937, 1. ]的时分,返回成 , 0.505, 0.5690.263, -0.110, >,

    输 索引,即可得出 ay([[, 便sor, 0.9
    [ 0.286, 0.81>0.161, -0.065,lass="6hu-4356-]
    smallest itema-mark="6hu">- eading-0">1. 问04, 0.332, -0./uploads/2020/0>, tr">0,0.62mber">1
    ]/span>, 0.025],">p = { R % P p出的特征值和特 "6hu-2100-mypl".458, 0.168, 0.从大到小摆放。M R ; U , 5rgsort, -0.213, -.069 , -0.469, -0.415, 0.597]ass="6hu-936-myu-1127-mypl" da025, -0.014],
    [ = array([[1. u-3180-mypl" da7 b Z 2 c
    1
    ,, evector = np.de>aU 5 i ; ! P s="hljs-number"征向量排序的问 i0.482<-mark="6hu">N Cpan class="hljsr">4])
    may([

    , tem i对应的特征向量 ark="6hu">R ` T出为

    <~ ( e Z y) { , W后正好倒置,咱 pl" data-mark="4, 题,pan class="hljs>Y 5 L V . Z
    

    其成果 果巨细是随机的 (-evalue) es = , A 和特征向量排序 6hu">q 3 b T % class="6hu-3230.014], [ 0.439mber">0.878]) 1, .456 , 0.782, 0ass="heading" du">E g A , l ]<0.569, <)

    s bash copyable6hu">Y [ # 6 x1: ` 4 0 M42],
    [ 0.439, -/span>lue = arr/span>, , 0.603] class="hljs-nuass="hljs-numbe467, 0.926, 1. pl" data-mark="-number">2